scispace - formally typeset
Search or ask a question
Topic

Feedback linearization

About: Feedback linearization is a research topic. Over the lifetime, 8654 publications have been published within this topic receiving 163686 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the method of equivalent linearization of Kryloff and Bogoliubov is generalized to the case of nonlinear dynamic systems with random excitation, applied to a variety of problems, and the results are compared with exact solutions of the Fokker-Planck equation.
Abstract: The method of equivalent linearization of Kryloff and Bogoliubov is generalized to the case of nonlinear dynamic systems with random excitation. The method is applied to a variety of problems, and the results are compared with exact solutions of the Fokker‐Planck equation for those cases where the Fokker‐Planck technique may be applied. Alternate approaches to the problem are discussed, including the characteristic function method of Rice.

600 citations

Journal ArticleDOI
TL;DR: This study introduces a fuzzy control design method for nonlinear systems with a guaranteed H/sub /spl infin// model reference tracking performance using the Takagi and Sugeno (TS) fuzzy model to represent a nonlinear system.
Abstract: This study introduces a fuzzy control design method for nonlinear systems with a guaranteed H/sub /spl infin// model reference tracking performance. First, the Takagi and Sugeno (TS) fuzzy model is employed to represent a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be solved very efficiently using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method.

597 citations

Journal ArticleDOI
TL;DR: In this paper, a complete solution to nonlinear decoupling and noninteracting control problems is made possible via a suitable nonlinear generalization of several powerful geometric concepts already introduced in studying linear multivariable control systems.
Abstract: The paper deals with the nonlinear decoupling and noninteracting control problems. A complete solution to those problems is made possible via a suitable nonlinear generalization of several powerful geometric concepts already introduced in studying linear multivariable control systems. The paper also includes algorithms concerned with the actual construction of the appropriate control laws.

597 citations

Book
28 Nov 2001
TL;DR: In this article, the application of modern control theory to some important underactuated mechanical systems is discussed, such as the inverted pendulum, the pendubot, the Furuta pendulum and the inertia wheel pendulum.
Abstract: From the Publisher: This book deals with the application of modern control theory to some important underactuated mechanical systems. It presents modelling and control of the following systems:||- the inverted pendulum||- a convey-crane system||- the pendubot system||- the Furuta pendulum||- the inertia wheel pendulum||- the planar flexible-joint robot||- the planar manipulator with two prismatic and one revolute joints||- the ball & beam system||- the hovercraft model||- the planar vertical and take-off landing (PVTOL) aircraft||- the helicopter model on a platform||- the helicopter model||In every case the model is obtained in detail using either the Euler-Lagrange formulation or the Newton's second law. We develop control algorithms for every particular system using techniques such as passivity, energy-based Lyapunov functions, forwarding, backstepping or feedback linearization techniques.||This book will be of great value for PhD students and researchers in the areas of non-linear control systems.

578 citations

Journal ArticleDOI
TL;DR: The dynamic model of a wheeled inverted pendulum (e.g., Segway, Quasimoro, and Joe) is analyzed from a controllability and feedback linearizability point of view and two novel controllers are designed.
Abstract: In this paper, the dynamic model of a wheeled inverted pendulum (eg, Segway, Quasimoro, and Joe) is analyzed from a controllability and feedback linearizability point of view First, a dynamic model of this underactuated system is derived with respect to the wheel motor torques as inputs while taking the nonholonomic no-slip constraints into considerations This model is compared with the previous models derived for similar systems The strong accessibility condition is checked and the maximum relative degree of the system is found Based on this result, a partial feedback linearization of the system is obtained and the internal dynamics equations are isolated The resulting equations are then used to design two novel controllers The first one is a two-level velocity controller for tracking vehicle orientation and heading speed set-points, while controlling the vehicle pitch (pendulum angle from the vertical) within a specified range The second controller is also a two-level controller which stabilizes the vehicle's position to the desired point, while again keeping the pitch bounded between specified limits Simulation results are provided to show the efficacy of the controllers using realistic data

551 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
94% related
Control system
129K papers, 1.5M citations
91% related
Linear system
59.5K papers, 1.4M citations
90% related
Robustness (computer science)
94.7K papers, 1.6M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202397
2022263
2021280
2020289
2019315
2018305