scispace - formally typeset
Topic

Feedforward neural network

About: Feedforward neural network is a(n) research topic. Over the lifetime, 11431 publication(s) have been published within this topic receiving 310905 citation(s). The topic is also known as: feed-forward neural network & feed forward neural network.

...read more

Papers
More filters

Book
Christopher M. Bishop1Institutions (1)
01 Jan 1995-
TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.

...read more

Abstract: From the Publisher: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

...read more

19,046 citations


Journal ArticleDOI
George Cybenko1Institutions (1)
TL;DR: It is demonstrated that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube.

...read more

Abstract: In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function ofn real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

...read more

10,615 citations


Proceedings Article
Xavier Glorot1, Yoshua Bengio1Institutions (1)
31 Mar 2010-
TL;DR: The objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future.

...read more

Abstract: Whereas before 2006 it appears that deep multilayer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future. We first observe the influence of the non-linear activations functions. We find that the logistic sigmoid activation is unsuited for deep networks with random initialization because of its mean value, which can drive especially the top hidden layer into saturation. Surprisingly, we find that saturated units can move out of saturation by themselves, albeit slowly, and explaining the plateaus sometimes seen when training neural networks. We find that a new non-linearity that saturates less can often be beneficial. Finally, we study how activations and gradients vary across layers and during training, with the idea that training may be more difficult when the singular values of the Jacobian associated with each layer are far from 1. Based on these considerations, we propose a new initialization scheme that brings substantially faster convergence. 1 Deep Neural Networks Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features. They include Appearing in Proceedings of the 13 International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of JMLR: WC Weston et al., 2008). Much attention has recently been devoted to them (see (Bengio, 2009) for a review), because of their theoretical appeal, inspiration from biology and human cognition, and because of empirical success in vision (Ranzato et al., 2007; Larochelle et al., 2007; Vincent et al., 2008) and natural language processing (NLP) (Collobert & Weston, 2008; Mnih & Hinton, 2009). Theoretical results reviewed and discussed by Bengio (2009), suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Most of the recent experimental results with deep architecture are obtained with models that can be turned into deep supervised neural networks, but with initialization or training schemes different from the classical feedforward neural networks (Rumelhart et al., 1986). Why are these new algorithms working so much better than the standard random initialization and gradient-based optimization of a supervised training criterion? Part of the answer may be found in recent analyses of the effect of unsupervised pretraining (Erhan et al., 2009), showing that it acts as a regularizer that initializes the parameters in a “better” basin of attraction of the optimization procedure, corresponding to an apparent local minimum associated with better generalization. But earlier work (Bengio et al., 2007) had shown that even a purely supervised but greedy layer-wise procedure would give better results. So here instead of focusing on what unsupervised pre-training or semi-supervised criteria bring to deep architectures, we focus on analyzing what may be going wrong with good old (but deep) multilayer neural networks. Our analysis is driven by investigative experiments to monitor activations (watching for saturation of hidden units) and gradients, across layers and across training iterations. We also evaluate the effects on these of choices of activation function (with the idea that it might affect saturation) and initialization procedure (since unsupervised pretraining is a particular form of initialization and it has a drastic impact).

...read more

9,463 citations


Journal ArticleDOI
01 Dec 2006-Neurocomputing
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

...read more

Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called e xtreme l earning m achine (ELM) for s ingle-hidden l ayer f eedforward neural n etworks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems including very large complex applications show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks. 1

...read more

8,861 citations


Journal ArticleDOI
TL;DR: The Marquardt algorithm for nonlinear least squares is presented and is incorporated into the backpropagation algorithm for training feedforward neural networks and is found to be much more efficient than either of the other techniques when the network contains no more than a few hundred weights.

...read more

Abstract: The Marquardt algorithm for nonlinear least squares is presented and is incorporated into the backpropagation algorithm for training feedforward neural networks. The algorithm is tested on several function approximation problems, and is compared with a conjugate gradient algorithm and a variable learning rate algorithm. It is found that the Marquardt algorithm is much more efficient than either of the other techniques when the network contains no more than a few hundred weights. >

...read more

6,422 citations


Network Information
Related Topics (5)
Artificial neural network

207K papers, 4.5M citations

95% related
Radial basis function network

4.1K papers, 86.3K citations

93% related
Perceptron

10.6K papers, 258.7K citations

92% related
Recurrent neural network

29.2K papers, 890K citations

92% related
Time delay neural network

20.8K papers, 503.2K citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021445
2020527
2019488
2018444
2017415

Top Attributes

Show by:

Topic's top 5 most impactful authors

Jacek M. Zurada

34 papers, 900 citations

Thomas Parisini

22 papers, 603 citations

Guang-Bin Huang

22 papers, 23.7K citations

Feilong Cao

16 papers, 516 citations

Rudy Setiono

14 papers, 755 citations