scispace - formally typeset
Search or ask a question
Topic

Femtosecond

About: Femtosecond is a research topic. Over the lifetime, 35106 publications have been published within this topic receiving 691405 citations. The topic is also known as: 1 E-15 s & fs.


Papers
More filters
Journal ArticleDOI
Zsolt Bor1
TL;DR: Equations describing the pulse-front delay in singlet lenses, achromats, and compound lenses are presented, which is several orders of magnitude larger than the broadening caused by group-velocity dispersion in the lens material.
Abstract: Large temporal front distortion of femtosecond pulses occurs in lenses having chromatic aberration. The effect is due to the difference between the phase and group velocities. Equations describing the pulse-front delay in singlet lenses, achromats, and compound lenses are presented. The pulse-front delay is several orders of magnitude larger than the broadening caused by group-velocity dispersion in the lens material. Delays occurring in Fresnel-type zone plates are also described.

206 citations

Journal ArticleDOI
TL;DR: In this article, a double pump/reflectivity probe using femtosecond laser pulses was used to investigate nonequilibrium electron dynamics at metal surfaces by measuring the equilibrated surface temperature.
Abstract: An experimental scheme (double pump/reflectivity probe using femtosecond laser pulses) enables the investigation of nonequilibrium electron dynamics at metal surfaces by measuring the equilibrated surface temperature. The competition between electron-phonon coupling and hot-electron transport gives rise to a reduced equilibrated temperature when the two pump pulses overlap in time, and provides a way of accurately determining the electron-phonon coupling constant. These observations have important consequences for femtosecond photochemical investigations.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a simple, high-speed, nearly vibration-free, mechanically scanned, optical delay line suitable for femtosecond time-resolved signal-averaging measurements.
Abstract: We have developed a simple, high-speed, nearly vibration-free, mechanically scanned, optical delay line suitable for femtosecond time-resolved signal-averaging measurements. We demonstrate a 2-ps time window autocorrelator with a display updated at 400 Hz. The delay line uses a dithering planar mirror as a time-varying linear phase ramp in the spectral plane of a modified grating-lens femtosecond pulse shaper. The time delay is linearly proportional to the angular deviation of the mirror. The high speed and low vibration are a result of the extremely small angular changes required to generate a large time delay.

205 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear optical loop mirror with all polarization-maintaining fibers is used for robust mode-locked femtosecond (F2F) fiber laser.
Abstract: We report on a novel architecture for robust mode-locked femtosecond fiber lasers using a nonlinear optical loop mirror with all polarization-maintaining fibers. Due to a nonreciprocal phase shift, the loop mirror can be operated in a compact and efficient reflection mode, offering the possibility to reach high repetition rates and easy implementation of tuning elements. In particular, longitudinal mode spacing and carrier-envelope offset frequency may be controlled in order to operate the laser as an optical frequency comb. We demonstrate femtosecond pulse generation at three different wavelengths (1030, 1565, and 2050 nm) using Ytterbium, Erbium, and co-doped Thulium–Holmium as gain media, respectively. Robust operation is achieved for a wide range of parameters, including repetition rates from 10 to 250 MHz.

205 citations

Journal ArticleDOI
TL;DR: It is shown that the induced dispersion can be pre‐compensated in all cases for pulses as short as 15 fs and predictions of the possibility of dispersion control for microscope objectives in general, as well as for even shorter pulses, can be inferred.
Abstract: The excitation efficiency in two-photon absorption (TPA) microscopy depends strongly — owing to the square dependence of the TPA fluorescence on the excitation intensity — on the temporal width of the excitation pulse. Because of their inherently large frequency bandwidth, ultrashort optical pulses tend to broaden substantially because of dispersion from propagation through the dispersive elements in the microscope. In this paper, the dispersion characteristics of a wide range of microscope objectives are investigated. It is shown that the induced dispersion can be pre-compensated in all cases for pulses as short as 15 fs. Because of the excellent agreement between the results from theoretical modelling and the experimental data, predictions of the possibility of dispersion control for microscope objectives in general, as well as for even shorter pulses, can be inferred. Since for TPA imaging the background due to single photon absorption processes and scattering is independent of the pulse width, proper dispersion pre-compensation — which minimizes the pulse duration at the focal point and hence maximizes the excitation efficiency — provides optimal image contrast in TPA microscopy.

204 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
95% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Optical fiber
167K papers, 1.8M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
83% related
Band gap
86.8K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,403
20223,116
20211,239
20201,571
20191,715
20181,651