scispace - formally typeset
Search or ask a question
Topic

Fermentation

About: Fermentation is a research topic. Over the lifetime, 68865 publications have been published within this topic receiving 1251939 citations. The topic is also known as: fermentation (metabolism).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the generation of inhibitors during degradation of lignocellulosic materials, and the effect of these on fermentation yield and productivity, and their interaction effects are reviewed.

2,373 citations

Journal ArticleDOI
Yan Lin1, Shuzo Tanaka1
TL;DR: The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.
Abstract: In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

1,610 citations

Journal ArticleDOI
01 Jul 1992-Yeast
TL;DR: The effect of benzoate on respiration was dependent on the dilution rate: at high dilution rates respiration increased proportionally with increasing Benzoate concentration as mentioned in this paper.
Abstract: Addition of benzoate to the medium reservoir of glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 growing at a dilution rate (D) of 0.10 h-1 resulted in a decrease in the biomass yield, and an increase in the specific oxygen uptake rate (qO2) from 2.5 to as high as 19.5 mmol g-1 h-1. Above a critical concentration, the presence of benzoate led to alcoholic fermentation and a reduction in qO2 to 13 mmol g-1 h-1. The stimulatory effect of benzoate on respiration was dependent on the dilution rate: at high dilution rates respiration was not enhanced by benzoate. Cells could only gradually adapt to growth in the presence of benzoate: a pulse of benzoate given directly to the culture resulted in wash-out. As the presence of benzoate in cultures growing at low dilution rates resulted in large changes in the catabolic glucose flux, it was of interest to study the effect of benzoate on the residual glucose concentration in the fermenter as well as on the level of some selected enzymes. At D = 0.10 h-1, the residual glucose concentration increased proportionally with increasing benzoate concentration. This suggests that modulation of the glucose flux mainly occurs via a change in the extracellular glucose concentration rather than by synthesis of an additional amount of carriers. Also various intracellular enzyme levels were not positively correlated with the rate of respiration. A notable exception was citrate synthase: its level increased with increasing respiration rate. Growth of S. cerevisiae in ethanol-limited cultures in the presence of benzoate also led to very high qO2 levels of 19-21 mmol g-1 h-1. During growth on glucose as well as on ethanol, the presence of benzoate coincided with an increase in the mitochondrial volume up to one quarter of the total cellular volume. Also with the Crabtree-negative yeasts Candida utilis, Kluyveromyces marxianus and Hansenula polymorpha, growth in the presence of benzoate resulted in an increase in qO2 and, at high concentrations of benzoate, in aerobic fermentation. In contrast to S. cerevisiae, the highest qO2 of these yeasts when growing at D = 0.10 h-1 in the presence of benzoate was equal to, or lower than the qO2 attainable at mu(max) without benzoate. Enzyme activities that were repressed by glucose in S. cerevisiae also declined in K. marxianus when the glucose flux was increased by the presence of benzoate.(ABSTRACT TRUNCATED AT 400 WORDS)

1,444 citations

Journal ArticleDOI
01 Feb 2003
TL;DR: Chemostat studies using pure cultures of saccharolytic gut micro-organisms demonstrate that C availability and growth rate strongly affect the outcome of fermentation, which can be seen through the effects of inorganic electron acceptors on fermentation processes.
Abstract: Short-chain fatty acid (SCFA) formation by intestinal bacteria is regulated by many different host, environmental, dietary and microbiological factors. In broad terms, however, substrate availability, bacterial species composition of the microbiota and intestinal transit time largely determine the amounts and types of SCFA that are produced in healthy individuals. The majority of SCFA in the gut are derived from bacterial breakdown of complex carbohydrates, especially in the proximal bowel, but digestion of proteins and peptides makes an increasing contribution to SCFA production as food residues pass through the bowel. Bacterial hydrogen metabolism also affects the way in which SCFA are made. This outcome can be seen through the effects of inorganic electron acceptors (nitrate, sulfate) on fermentation processes, where they facilitate the formation of more oxidised SCFA such as acetate, at the expense of more reduced fatty acids, such as butyrate. Chemostat studies using pure cultures of saccharolytic gut micro-organisms demonstrate that C availability and growth rate strongly affect the outcome of fermentation. For example, acetate and formate are the major bifidobacterial fermentation products formed during growth under C limitation, whereas acetate and lactate are produced when carbohydrate is in excess. Lactate is also used as an electron sink in Clostridium perfringens and, to a lesser extent, in Bacteroides fragilis. In the latter organism acetate and succinate are the major fermentation products when substrate is abundant, whereas succinate is decarboxylated to produce propionate when C and energy sources are limiting.

1,418 citations


Network Information
Related Topics (5)
Yeast
31.7K papers, 868.9K citations
89% related
Lactic acid
25.2K papers, 499.1K citations
88% related
Bacillus subtilis
19.6K papers, 539.4K citations
87% related
Starch
50.2K papers, 1M citations
86% related
Bacteria
23.6K papers, 715.9K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234,406
20228,949
20212,511
20202,938
20193,466
20183,894