scispace - formally typeset
Search or ask a question
Topic

Fermi liquid theory

About: Fermi liquid theory is a research topic. Over the lifetime, 7142 publications have been published within this topic receiving 182175 citations. The topic is also known as: Landau-Fermi liquid theory & Fermi liquid theory.


Papers
More filters
Book
01 Jan 1981
TL;DR: In this article, the authors present a model for the second quantization of a particle and show that it can be used to construct a pair distribution function with respect to a pair of spinless fermions.
Abstract: 1. Introductory Material.- 1.1. Harmonic Oscillators and Phonons.- 1.2. Second Quantization for Particles.- 1.3. Electron - Phonon Interactions.- A. Interaction Hamiltonian.- B. Localized Electron.- C. Deformation Potential.- D. Piezoelectric Interaction.- E. Polar Coupling.- 1.4. Spin Hamiltonians.- A. Homogeneous Spin Systems.- B. Impurity Spin Models.- 1.5. Photons.- A. Gauges.- B. Lagrangian.- C. Hamiltonian.- 1.6. Pair Distribution Function.- Problems.- 2. Green's Functions at Zero Temperature.- 2.1. Interaction Representation.- A. Schrodinger.- B. Heisenberg.- C. Interaction.- 2.2. S Matrix.- 2.3. Green's Functions.- 2.4. Wick's Theorem.- 2.5. Feynman Diagrams.- 2.6. Vacuum Polarization Graphs.- 2.7. Dyson's Equation.- 2.8. Rules for Constructing Diagrams.- 2.9. Time-Loop S Matrix.- A. Six Green's Functions.- B. Dyson's Equation.- 2.10. Photon Green's Functions.- Problems.- 3. Green's Functions at Finite Temperatures.- 3.1. Introduction.- 3.2. Matsubara Green's Functions.- 3.3. Retarded and Advanced Green's Functions.- 3.4. Dyson's Equation.- 3.5. Frequency Summations.- 3.6. Linked Cluster Expansions.- A. Thermodynamic Potential.- B. Green's Functions.- 3.7. Real Time Green's Functions.- Wigner Distribution Function.- 3.8. Kubo Formula for Electrical Conductivity.- A. Transverse Fields, Zero Temperature.- B. Finite Temperatures.- C. Zero Frequency.- D. Photon Self-Energy.- 3.9. Other Kubo Formulas.- A. Pauli Paramagnetic Susceptibility.- B. Thermal Currents and Onsager Relations.- C. Correlation Functions.- Problems.- 4. Exactly Solvable Models.- 4.1. Potential Scattering.- A. Reaction Matrix.- B. T Matrix.- C. Friedel's Theorem.- D. Phase Shifts.- E. Impurity Scattering.- F. Ground State Energy.- 4.2. Localized State in the Continuum.- 4.3. Independent Boson Models.- A. Solution by Canonical Transformation.- B. Feynman Disentangling of Operators.- C. Einstein Model.- D. Optical Absorption and Emission.- E. Sudden Switching.- F. Linked Cluster Expansion.- 4.4. Tomonaga Model.- A. Tomonaga Model.- B. Spin Waves.- C. Luttinger Model.- D. Single-Particle Properties.- E. Interacting System of Spinless Fermions.- F. Electron Exchange.- 4.5. Polaritons.- A. Semiclassical Discussion.- B. Phonon-Photon Coupling.- C. Exciton-Photon Coupling.- Problems.- 5. Electron Gas.- 5.1. Exchange and Correlation.- A. Kinetic Energy.- B. Direct Coulomb.- C. Exchange.- D. Seitz' Theorem.- E. ?(2a).- F. ?(2b).- G. ?(2c).- H. High-Density Limit.- I. Pair Distribution Function.- 5.2. Wigner Lattice and Metallic Hydrogen.- Metallic Hydrogen.- 5.3. Cohesive Energy of Metals.- 5.4. Linear Screening.- 5.5. Model Dielectric Functions.- A. Thomas-Fermi.- B. Lindhard, or RPA.- C. Hubbard.- D. Singwi-Sjolander.- 5.6. Properties of the Electron Gas.- A. Pair Distribution Function.- B. Screening Charge.- C. Correlation Energies.- D. Compressibility.- 5.7. Sum Rules.- 5.8. One-Electron Properties.- A. Renormalization Constant ZF.- B. Effective Mass.- C. Pauli Paramagnetic Susceptibility.- D. Mean Free Path.- Problems.- 6. Electron-Phonon Interaction.- 6.1 Frohlich Hamiltonian.- A. Brillouin-Wigner Perturbation Theory.- B. Rayleigh-Schrodinger Perturbation Theory.- C. Strong Coupling Theory.- D. Linked Cluster Theory.- 6.2 Small Polaron Theory.- A. Large Polarons.- B. Small Polarons.- C. Diagonal Transitions.- D. Nondiagonal Transitions.- E. Dispersive Phonons.- F. Einstein Model.- G. Kubo Formula.- 6.3 Heavily Doped Semiconductors.- A. Screened Interaction.- B. Experimental Verifications.- C. Electron Self-Energies.- 6.4 Metals.- A. Phonons in Metals.- B. Electron Self-Energies.- Problems.- 7. dc Conductivities.- 7.1. Electron Scattering by Impurities.- A. Boltzmann Equation.- B. Kubo Formula: Approximate Solution.- C. Kubo Formula: Rigorous Solution.- D. Ward Identities.- 7.2. Mobility of Frohlich Polarons.- A. Single-Particle Properties.- B. ??1 Term in the Mobility.- 7.3. Electron-Phonon Interactions in Metals.- A. Force-Force Correlation Function.- B. Kubo Formula.- C. Mass Enhancement.- D. Thermoelectric Power.- 7.4. Quantum Boltzmann Equation.- A. Derivation of the Quantum Boltzmann Equation.- B. Gradient Expansion.- C. Electron Scattering by Impurities.- D. T2 Contribution to the Electrical Resistivity.- Problems.- 8. Optical Properties of Solids.- 8.1. Nearly Free-Electron System.- A. General Properties.- B. Force-Force Correlation Functions.- C. Frohlich Polarons.- D. Interband Transitions.- E. Phonons.- 8.2. Wannier Excitons.- A. The Model.- B. Solution by Green's Functions.- C. Core-Level Spectra.- 8.3. X-Ray Spectra in Metals.- A. Physical Model.- B. Edge Singularities.- C. Orthogonality Catastrophe.- D. MND Theory.- E. XPS Spectra.- Problems.- 9. Superconductivity.- 9.1. Cooper Instability.- 9.2. BCS Theory.- 9.3. Electron Tunneling.- A. Tunneling Hamiltonian.- B. Normal Metals.- C. Normal-Superconductor.- D. Two Superconductors.- E. Josephson Tunneling.- 9.4. Infrared Absorption.- 9.5. Acoustic Attenuation.- 9.6. Excitons in Superconductors.- 9.7. Strong Coupling Theory.- Problems.- 10. Liquid Helium.- 10.1. Pairing Theory.- A. Hartree and Exchange.- B. Bogoliubov Theory of 4He.- 10.2. 4He: Ground State Properties.- A. Off-Diagonal Long-Range Order.- B. Correlated Basis Functions.- C. Experiments on nk.- 10.3. 4He: Excitation Spectrum.- A. Bijl-Feynman Theory.- B. Improved Excitation Spectra.- C. Superfluidity.- 10.4. 3He: Normal Liquid.- A. Fermi Liquid Theory.- B. Experiments and Microscopic Theories.- C. Interaction between Quasiparticles: Excitations.- D. Quasiparticle Transport.- 10.5. Superfluid 3He.- A. Triplet Pairing.- B. Equal Spin Pairing.- Problems.- 11. Spin Fluctuations.- 11.1. Kondo Model.- A. High-Temperature Scattering.- B. Low-Temperature State.- C. Kondo Temperature.- 11.2. Anderson Model.- A. Collective States.- B. Green's Functions.- C. Spectroscopies.- Problems.- References.- Author Index.

5,888 citations

Book
28 Jan 1993
TL;DR: In this article, the Kondo problem and the Bethe ansatz have been studied in the context of magnetic impurities and fermi liquid theories, and N-fold degenerate models have been proposed.
Abstract: 1. Models of magnetic impurities 2. Resistivity calculations and the resistance minimum 3. The Kondo problem 4. Renormalization group calculations 5. Fermi liquid theories 6. Exact solutions and the Bethe ansatz 7. N-fold degenerate models I 8. N-fold degenerate models II 9. Theory and experiment 10. Strongly correlated fermions Appendices.

2,763 citations

01 Apr 1997
TL;DR: In this paper, the Kondo problem and the Bethe ansatz have been studied in the context of magnetic impurities and fermi liquid theories, and N-fold degenerate models have been proposed.
Abstract: 1. Models of magnetic impurities 2. Resistivity calculations and the resistance minimum 3. The Kondo problem 4. Renormalization group calculations 5. Fermi liquid theories 6. Exact solutions and the Bethe ansatz 7. N-fold degenerate models I 8. N-fold degenerate models II 9. Theory and experiment 10. Strongly correlated fermions Appendices.

2,493 citations

Journal ArticleDOI
TL;DR: In this article, the physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective, focusing on the effect of interactions that bring the gas into a superfluid phase at low temperature.
Abstract: The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the $s$-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

1,753 citations

Journal ArticleDOI
TL;DR: In this paper, a summary and evaluation of the experimental properties of spin-triplet superconductivity in a quasi-two-dimensional Fermi liquid is presented. But the authors do not consider the effect of symmetry-breaking magnetic fields on the phase diagram.
Abstract: This review presents a summary and evaluation of the experimental properties of unconventional superconductivity in ${\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}$ as they were known in the spring of 2002. At the same time, the paper is intended to be useful as an introduction to the physics of spin-triplet superconductivity. First, the authors show how the normal-state properties of ${\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}$ are quantitatively described in terms of a quasi-two-dimensional Fermi liquid. Then they summarize its phenomenological superconducting parameters in the framework of the Ginzburg-Landau model, and discuss the existing evidence for spin-triplet pairing. After a brief introduction to the vector order parameter, they examine the most likely symmetry of the triplet state. The structure of the superconducting energy gap is discussed, as is the effect of symmetry-breaking magnetic fields on the phase diagram. The article concludes with a discussion of some outstanding issues and desirable future work. Appendixes on additional details of the normal state, difficulty in observing the bulk Fermi surface by angle-resolved photoemission, and the enhancement of superconducting transition temperature in a two-phase ${\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\ensuremath{-}\mathrm{Ru}$ system are included.

1,573 citations


Network Information
Related Topics (5)
Superconductivity
71.9K papers, 1.3M citations
93% related
Ferromagnetism
55K papers, 1.2M citations
92% related
Magnetization
107.8K papers, 1.9M citations
90% related
Phase transition
82.8K papers, 1.6M citations
89% related
Ground state
70K papers, 1.5M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202375
2022127
2021172
2020198
2019169
2018163