scispace - formally typeset
Search or ask a question
Topic

Ferric

About: Ferric is a research topic. Over the lifetime, 15332 publications have been published within this topic receiving 330925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter when amorphous ferric oxyhydroxides are available in anaerobic sediments, and the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.
Abstract: The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.

1,360 citations

Journal ArticleDOI
TL;DR: In this article, the 1s → 3d pre-edge features of high-spin ferrous and ferric model complexes in octahedral, tetrahedral, and square pyramidal environments were investigated and the allowable many-electron excited states were determined using ligand field theory.
Abstract: X-ray absorption Fe−K edge data on ferrous and ferric model complexes have been studied to establish a detailed understanding of the 1s → 3d pre-edge feature and its sensitivity to the electronic structure of the iron site. The energy position and splitting, and intensity distribution, of the pre-edge feature were found to vary systematically with spin state, oxidation state, geometry, and bridging ligation (for binuclear complexes). A methodology for interpreting the energy splitting and intensity distribution of the 1s → 3d pre-edge features was developed for high-spin ferrous and ferric complexes in octahedral, tetrahedral, and square pyramidal environments and low-spin ferrous and ferric complexes in octahedral environments. In each case, the allowable many-electron excited states were determined using ligand field theory. The energies of the excited states were calculated and compared to the energy splitting in the 1s → 3d pre-edge features. The relative intensities of electric quadrupole transitions...

1,181 citations

Journal ArticleDOI
25 Feb 1999-Nature
TL;DR: The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils and for the treatment of iron deficiency in plants.
Abstract: Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

1,158 citations

Journal ArticleDOI
19 Nov 1987-Nature
TL;DR: The GS-15 organism as mentioned in this paper is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation.
Abstract: The potential contribution of microbial metabolism to the magnetization of sediments has only recently been recognized. In the presence of oxygen, magnetotactic bacteria can form intracellular chains of magnetite while using oxygen or nitrate as the terminal electron acceptor for metabolism1. The production of ultrafine-grained magnetite by magnetotactic bacteria in surficial aerobic sediments may contribute significantly to the natural remanent magnetism of sediments2–4. However, recent studies on iron reduction in anaerobic sediments suggested that bacteria can also generate magnetite in the absence of oxygen5. We report here on a sediment organism, designated GS-15, which produces copious quantities of ultrafine-grained magnetite under anaerobic conditions. GS-15 is not magnetotactic, but reduces amorphic ferric oxide to extracellular magnetite during the reduction of ferric iron as the terminal electron acceptor for organic matter oxidation. This novel metabolism may be the mechanism for the formation of ultrafine-grained magnetite in anaerobic sediments, and couldaccount for the accumulation of magnetite in ancient iron formations and hydrocarbon deposits.

921 citations

Journal ArticleDOI
TL;DR: In this article, Ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen vacancy (F center) is proposed to explain the high Curie temperature.
Abstract: Thin films grown by pulsed-laser deposition from targets of Sn0.95Fe0.05O2 are transparent ferromagnets with Curie temperature and spontaneous magnetization of 610 K and 2.2 A m2 kg−1, respectively. The 57Fe Mossbauer spectra show the iron is all high-spin Fe3+ but the films are magnetically inhomogeneous on an atomic scale, with only 23% of the iron ordering magnetically. The net ferromagnetic moment per ordered iron ion, 1.8 μB, is greater than for any simple iron oxide with superexchange interactions. Ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen vacancy (F center) is proposed to explain the high Curie temperature.

868 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
88% related
Adsorption
226.4K papers, 5.9M citations
85% related
Copper
122.3K papers, 1.8M citations
85% related
Amino acid
124.9K papers, 4M citations
81% related
Photocatalysis
67K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023244
2022606
2021300
2020413
2019573
2018597