scispace - formally typeset
Search or ask a question
Topic

Ferrimagnetism

About: Ferrimagnetism is a research topic. Over the lifetime, 7609 publications have been published within this topic receiving 151259 citations.


Papers
More filters
01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: The most important members of the hexaferrite family are shown below, where Me = a small 2+ ion such as cobalt, nickel, or zinc, and Ba can be substituted by Sr: • M-type ferrites, such as BaFe12O19 (BaM or barium ferrite), SrFe 12O19(SrM or strontium ferite), and cobalt-titanium substituted M ferrite, Sr- or BaFe 12−2xCoxTixO19, or CoTiM as discussed by the authors.

1,855 citations

Journal ArticleDOI
F.K. Lotgering1
TL;DR: In this article, a new method is described for the preparation of polycrystalline materials with oriented crystals by reaction of the oriented grains of a strongly anisotropic ferrimagnetic with non-oriented grains of usually non-magnetic components.

1,850 citations

Journal ArticleDOI
03 May 1996-Science
TL;DR: The magnetization in the ferrimagnetic region below 16 kelvin was substantially increased after illumination and could be restored almost to its original level by thermal treatment and these effects are thought to be caused by an internal photochemical redox reaction.
Abstract: Photoinduced magnetization was observed in a Prussian blue analog, K0.2Co1.4- [Fe(CN)6]·6.9H2O. An increase in the critical temperature from 16 to 19 kelvin was observed as a result of red light illumination. Moreover, the magnetization in the ferrimagnetic region below 16 kelvin was substantially increased after illumination and could be restored almost to its original level by thermal treatment. These effects are thought to be caused by an internal photochemical redox reaction. Furthermore, blue light illumination could be used to partly remove the enhancement of the magnetization. Such control over magnetic properties by optical stimuli may have application in magneto-optical devices.

1,537 citations

Book
01 Jan 1997
TL;DR: Magnetic properties of magnetism have been studied in a wide range of applications, including magnetism of amorphous materials, magnetism and magnetostriction as mentioned in this paper, spin distribution and domain walls.
Abstract: 1. Magnetostatic phenomena 2. Magnetic measurements 3. Atomic magnetic moments 4. Macroscopic experimental techniques 5. Magnetic disorder 6. Ferromagnetism 7. Antiferromagnetism and ferrimagnetism 8. Magnetism of metals and alloys 9. Magnetism of ferromagnetic oxides 10. Magnetism of compounds 11. Magnetism of amorphous materials 12. Magnetocrystalline anisotrophy 13. Induced magnetic anisotropy 14. Magnetostriction 15. Observation of domain structures 16. Spin distribution and domain walls 17. Magnetic domain structure 18. Technical magnetization 19. Spin phase transition 20. Dynamic magnetization 21. Various phenomena association with magnetization 22. Engineering applications of magnetic materials

1,486 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
94% related
Band gap
86.8K papers, 2.2M citations
89% related
Amorphous solid
117K papers, 2.2M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023372
2022766
2021359
2020358
2019369
2018353