scispace - formally typeset
Search or ask a question
Topic

Ferroelectricity

About: Ferroelectricity is a research topic. Over the lifetime, 47111 publications have been published within this topic receiving 1008145 citations.


Papers
More filters
Journal ArticleDOI
20 Jan 2000-Nature
TL;DR: It is shown that a large piezoelectric response can be driven by polarization rotation induced by an external electric field, and the computations suggest how to design materials with better performance, and may stimulate further interest in the fundamental theory of dielectric systems in finite electric fields.
Abstract: Piezoelectric materials, which convert mechanical to electrical energy (and vice versa), are crucial in medical imaging, telecommunication and ultrasonic devices. A new generation of single-crystal materials, such as Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), exhibit a piezoelectric effect that is ten times larger than conventional ceramics, and may revolutionize these applications. However, the mechanism underlying the ultrahigh performance of these new materials-and consequently the possibilities for further improvements-are not at present clear. Here we report a first-principles study of the ferroelectric perovskite, BaTiO3, which is similar to single-crystal PZN-PT but is a simpler system to analyse. We show that a large piezoelectric response can be driven by polarization rotation induced by an external electric field. Our computations suggest how to design materials with better performance, and may stimulate further interest in the fundamental theory of dielectric systems in finite electric fields.

1,789 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the dielectric properties, lattice and microstructure of ceramic BaTiO3 showing grain sizes of 0.3-100 μm and showed that at grain sizes <10 μm the width of ferroelectric 90° domains decreases proportionally to the square root of the grain diameter.
Abstract: Dielectric properties, lattice‐ and microstructure of ceramic BaTiO3 showing grain sizes of 0.3–100 μm were studied. At grain sizes <10 μm the width of ferroelectric 90° domains decreases proportionally to the square root of the grain diameter. The decreasing width of the domains can be theoretically explained by the equilibrium of elastic field energy and domain wall energy. The smaller the grains, the more the dielectric and the elastic constants are determined by the contribution of 90° domain walls. The permittivity below the Curie point shows a pronounced maximum er ≊5000 at grain sizes 0.8–1 μm. At grain sizes <0.7 μm the permittivity strongly decreases and the lattice gradually changes from tetragonal to pseudocubic.

1,742 citations

Journal ArticleDOI
05 Nov 2004-Science
TL;DR: This work demonstrates a route to a lead-free ferroelectric for nonvolatile memories and electro-optic devices.
Abstract: Biaxial compressive strain has been used to markedly enhance the ferroelectric properties of BaTiO 3 thin films. This strain, imposed by coherent epitaxy, can result in a ferroelectric transition temperature nearly 500°C higher and a remanent polarization at least 250% higher than bulk BaTiO 3 single crystals. This work demonstrates a route to a lead-free ferroelectric for nonvolatile memories and electro-optic devices.

1,672 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art in ferroelectric thin films is presented in this paper, where the authors review applications: micro-systems' applications, applications in high frequency electronics, and memories based on Ferroelectric materials.
Abstract: An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems' applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials, structure (domains, in particular), and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectric films which is relevant to microsystems' applications, and permittivity and loss in ferroelectric films-important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures. (c) 2006 American Institute of Physics.

1,632 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that crystalline phases with ferroelectric behavior can be formed in thin thin films of SiO2 doped hafnium oxide, which is suitable for field effect transistors and capacitors due to its excellent compatibility to silicon technology.
Abstract: We report that crystalline phases with ferroelectric behavior can be formed in thin films of SiO2 doped hafnium oxide. Films with a thickness of 10 nm and with less than 4 mol. % of SiO2 crystallize in a monoclinic/tetragonal phase mixture. We observed that the formation of the monoclinic phase is inhibited if crystallization occurs under mechanical encapsulation and an orthorhombic phase is obtained. This phase shows a distinct piezoelectric response, while polarization measurements exhibit a remanent polarization above 10 μC/cm2 at a coercive field of 1 MV/cm, suggesting that this phase is ferroelectric. Ferroelectric hafnium oxide is ideally suited for ferroelectric field effect transistors and capacitors due to its excellent compatibility to silicon technology.

1,631 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Dielectric
169.7K papers, 2.7M citations
93% related
Amorphous solid
117K papers, 2.2M citations
91% related
Silicon
196K papers, 3M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,948
20223,903
20211,795
20201,901
20191,865
20181,880