scispace - formally typeset
Search or ask a question

Showing papers on "Ferromagnetism published in 2021"


Journal ArticleDOI
12 Mar 2021-Science
TL;DR: In this article, the authors used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrated a spin-LED that operates at room temperature without magnetic fields or ferromagnetic contacts.
Abstract: In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts. We used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrate a spin-LED that operates at room temperature without magnetic fields or ferromagnetic contacts. The CISS layer consists of oriented, self-assembled small chiral molecules within a layered organic-inorganic metal-halide hybrid semiconductor framework. The spin-LED achieves ±2.6% circularly polarized electroluminescence at room temperature.

202 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit.
Abstract: The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moire superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

141 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported chemical vapor deposition growth of air-stable 2D metallic 1T-CrTe2 ultrathin crystals with controlled thickness and showed that the easy axis changes from in-plane to out-of-plane Monotonic increase of Curie temperature with the thickness decreasing from ~1300 to ~76 nm.
Abstract: The discovery of ferromagnetic two-dimensional van der Waals materials has opened up opportunities to explore intriguing physics and to develop innovative spintronic devices However, controllable synthesis of these 2D ferromagnets and enhancing their stability under ambient conditions remain challenging Here, we report chemical vapor deposition growth of air-stable 2D metallic 1T-CrTe2 ultrathin crystals with controlled thickness Their long-range ferromagnetic ordering is confirmed by a robust anomalous Hall effect, which has seldom been observed in other layered 2D materials grown by chemical vapor deposition With reducing the thickness of 1T-CrTe2 from tens of nanometers to several nanometers, the easy axis changes from in-plane to out-of-plane Monotonic increase of Curie temperature with the thickness decreasing from ~1300 to ~76 nm is observed Theoretical calculations indicate that the weakening of the Coulomb screening in the two-dimensional limit plays a crucial role in the change of magnetic properties

131 citations


Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper reported the growth and properties of single and few-layer CrTe2, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE).
Abstract: While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe2, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature (TC) up to 300 K, an atomic magnetic moment of ~0.21 $${\mu }_{{\rm{B}}}$$ /Cr and perpendicular magnetic anisotropy (PMA) constant (Ku) of 4.89 × 105 erg/cm3 at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer (TC ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe2 films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices. The emergence of two dimensional ferromagnetism suffers from an inherent fragility to thermal fluctuations, which typically restricts the Curie temperature to below room temperature. Here, Zhang et al present CrTe2 thin films grown via molecular beam epitaxy with a Curie temperature exceeding 300 K.

123 citations


Journal ArticleDOI
TL;DR: In this article, the structural, electronic, elastic, magnetic, and thermodynamic properties of two new Heusler alloys are studied based on the first principal calculation using the scheme of the generalized gradient approximation (GGA) of density function theory.
Abstract: The structural, electronic, elastic, magnetic, and thermodynamic properties of two new Heusler alloys Rh2MnZ (Z = Zr, Hf) are studied based on the first principal calculation using the scheme of the generalized gradient approximation (GGA) of density function theory. The investigation was carried out in ferromagnetic (FM), anti-ferromagnetic (AFM), and the non-magnetic (NM) phases of the Cu2MnAl-type structure (regular structure) and Hg2CuTi-type-structure (inverse structure). Both alloys were found to be more stable in the ferromagnetic phase of the Cu2MnAl-type structure. The equilibrium lattice parameter in this structure is equal to 6.39 Ǻ for Rh2MnZr and 6.35 Ǻ for Rh2MnHf. The electronic properties reveled the metallic nature of the Heusler Rh2MnZ (Z = Zr, Hf) alloys. The interpretation of the elastic properties confirmed the elastic stability of the two alloys in the studied structure with a good agreement between the resulting bulk modulus from the structural properties and that of resulting from the elastic properties. Other elastic parameters such as modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio (ν) and Pugh’s ratio B/G, and the Zener anisotropy parameter A showed that the Rh2MnZ (Z = Zr, Hf) alloys are slightly deformed. They show high rigidity, anisotropic, and little deformation and behave in ductile way. The magnetic properties confirmed the ferromagnetic state of both compounds with computed total magnetic moment equal to 4.76 μB for Rh2MnZr and 4.60 μB for Rh2MnHf. The thermodynamic parameters were evaluated with various temperatures between 0 and 1200 K and a pressure from 0 to 50 GPa using the quasi-harmonic Debye model.

118 citations


Journal ArticleDOI
TL;DR: CrSBr is established as an exciting 2D magnetic semiconductor and the SHG probe of magnetic symmetry to the monolayer limit is extended, opening the door to exploring the applications of magnetic-electronic coupling and the magnetic toroidal moment.
Abstract: The advent of two-dimensional (2D) magnets offers unprecedented control over electrons and spins. A key factor in determining exchange coupling and magnetic order is symmetry. Here, we apply second harmonic generation (SHG) to probe a 2D magnetic semiconductor CrSBr. We find that monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a large magnetic dipole SHG effect in the centrosymmetric structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, and in contrast to other 2D magnets, the Neel temperature of CrSBr increases with decreasing layer number. We identify magnetic dipole and magnetic toroidal moments as order parameters of the ferromagnetic monolayer and antiferromagnetic bilayer, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and extend the SHG probe of magnetic symmetry to the monolayer limit, opening the door to exploring the applications of magnetic-electronic coupling and the magnetic toroidal moment.

116 citations


Journal ArticleDOI
TL;DR: In this article, the anomalous Hall effect was shown to be present in a three-dimensional topological magnetic superlattice structure when the Fermi energy is tuned into the correct energy window.
Abstract: The quantum anomalous Hall effect1,2 is a fundamental transport response of a topological insulator in zero magnetic field. Its physical origin is a result of an intrinsically inverted electronic band structure and ferromagnetism3, and its most important manifestation is the dissipationless flow of chiral charge currents at the edges of the system4, a property that has the potential to transform future quantum electronics5,6. Here, we report a Berry-curvature-driven4,7 anomalous Hall regime at temperatures of several Kelvin in the magnetic topological bulk crystals in which Mn ions self-organize into a period-ordered MnBi2Te4/Bi2Te3 superlattice. Robust ferromagnetism of the MnBi2Te4 monolayers opens a surface gap8–10, and when the Fermi level is tuned to be within this gap, the anomalous Hall conductance reaches an e2/h quantization plateau, which is a clear indication of chiral transport through the edge states. The quantization in this regime is not obstructed by the bulk conduction channels and therefore should be present in a broad family of topological magnets. A three-dimensional topological magnetic superlattice structure exhibits the quantum anomalous Hall effect when the Fermi energy is tuned into the correct energy window.

109 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the experimental observation of Neel-type chiral magnetic skyrmions and their lattice formation in a vdW ferromagnet Fe3GeTe2 (FGT).
Abstract: Since the discovery of ferromagnetic two-dimensional (2D) van der Waals (vdW) crystals, significant interest on such 2D magnets has emerged, inspired by their appealing properties and integration with other 2D family for unique heterostructures In known 2D magnets, spin-orbit coupling (SOC) stabilizes perpendicular magnetic anisotropy (PMA) Such a strong SOC could also lift the chiral degeneracy, leading to the formation of topological magnetic textures such as skyrmions through the Dzyaloshinskii-Moriya interaction (DMI) Here, we report the experimental observation of Neel-type chiral magnetic skyrmions and their lattice (SkX) formation in a vdW ferromagnet Fe3GeTe2 (FGT) We demonstrate the ability to drive individual skyrmion by short current pulses along a vdW heterostructure, FGT/h-BN, as highly required for any skyrmion-based spintronic device Using first principle calculations supported by experiments, we unveil the origin of DMI being the interfaces with oxides, which then allows us to engineer vdW heterostructures for desired chiral states Our finding opens the door to topological spin textures in the 2D vdW magnet and their potential device application

100 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states, and the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales.
Abstract: Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6. Non-thermal lattice control of exchange interactions allows for picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic order.

91 citations


Journal ArticleDOI
01 Sep 2021-Nature
TL;DR: In this article, gate-tuned van Hove singularities in rhombohedral trilayer graphene were used to drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavors.
Abstract: Ferromagnetism is most common in transition metal compounds where electrons occupy highly localized d orbitals. However, ferromagnetic order may also arise in low-density two-dimensional electron systems1–5. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of transitions tuned to the density and electronic displacement field between phases in which quantum oscillations have fourfold, twofold or onefold degeneracy, associated with a spin- and valley-degenerate normal metal, spin-polarized ‘half-metal’, and spin- and valley-polarized ‘quarter-metal’, respectively. For electron doping, the salient features of the data are well captured by a phenomenological Stoner model7 that includes valley-anisotropic interactions. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, we introduce a moire superlattice using a rotationally aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin order is only weakly perturbed, with the moire potential catalysing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter-metal states occur at half- or quarter-superlattice band filling. Our results show that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory, and reveal magnetism in moire materials4,5,9,10 to be fundamentally itinerant in nature. A study shows that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory and reveals that magnetism in moire materials is fundamentally itinerant in nature.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used epitaxial layers of superconducting Al and the ferromagnetic insulator EuS on semiconducting InAs nanowires to infer a remanent effective Zeeman field exceeding 1'T and observe stable zero-bias conductance peaks in bias spectroscopy at zero applied field.
Abstract: Hybrid quantum materials allow for quantum phases that otherwise do not exist in nature1,2. For example, a one-dimensional topological superconductor with Majorana states bound to its ends can be realized by coupling a semiconductor nanowire to a superconductor in the presence of a strong magnetic field3–5. However, the applied magnetic fields are detrimental to superconductivity, and constrain device layout, components, materials, fabrication and operation6. Early on, an alternative source of Zeeman coupling that circumvents these constraints—using a ferromagnetic insulator instead of an applied field—was proposed theoretically7. Here, we report transport measurements in hybrid nanowires using epitaxial layers of superconducting Al and the ferromagnetic insulator EuS on semiconducting InAs nanowires. We infer a remanent effective Zeeman field exceeding 1 T and observe stable zero-bias conductance peaks in bias spectroscopy at zero applied field, consistent with topological superconductivity. Hysteretic spectral features in applied magnetic field support this picture. By incorporating a ferromagnetic layer in their superconductor–semiconductor nanowire hybrid device, Vaitiekėnas et al. show that zero-bias peaks—potential Majorana bound states—can be induced without an external magnetic field.

Journal ArticleDOI
TL;DR: In this paper, stacking-dependent interlayer exchange interactions in small-twist-angle CrI3 bilayers yield an ordered ground state with coexisting ferromagnetic and antiferromagnetic regions.
Abstract: Moire engineering1–3 of van der Waals magnetic materials4–9 can yield new magnetic ground states via competing interactions in moire superlattices10–13. Theory predicts a suite of interesting phenomena, including multiflavour magnetic states10, non-collinear magnetic states10–13, moire magnon bands and magnon networks14 in twisted bilayer magnetic crystals, but so far such non-trivial magnetic ground states have not emerged experimentally. Here, by utilizing the stacking-dependent interlayer exchange interactions in two-dimensional magnetic materials15–18, we demonstrate a coexisting ferromagnetic (FM) and antiferromagnetic (AF) ground state in small-twist-angle CrI3 bilayers. The FM–AF state transitions to a collinear FM ground state above a critical twist angle of about 3°. The coexisting FM and AF domains result from a competition between the interlayer AF coupling, which emerges in the monoclinic stacking regions of the moire superlattice, and the energy cost for forming FM–AF domain walls. Our observations are consistent with the emergence of a non-collinear magnetic ground state with FM and AF domains on the moire length scale10–13. We further employ the doping dependence of the interlayer AF interaction to control the FM–AF state by electrically gating a bilayer sample. These experiments highlight the potential to create complex magnetic ground states in twisted bilayer magnetic crystals, and may find application in future gate-voltage-controllable high-density magnetic memory storage. In moire superlattice van der Waals magnetic materials, competing interactions emerge and can stabilize new magnetic states. Here, stacking-dependent interlayer exchange interactions in small-twist-angle CrI3 bilayers yield an ordered ground state with coexisting ferromagnetic and antiferromagnetic regions.

Journal ArticleDOI
TL;DR: P-type MnSb2 Te4, previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess and a critical exponent of the magnetization β ≈ 1 is found, indicating the vicinity of a quantum critical point.
Abstract: Ferromagnetic topological insulators exhibit the quantum anomalous Hall effect, which is potentially useful for high-precision metrology, edge channel spintronics, and topological qubits. The stable 2+ state of Mn enables intrinsic magnetic topological insulators. MnBi2Te4 is, however, antiferromagnetic with 25 K Neel temperature and is strongly n-doped. In this work, p-type MnSb2Te4, previously considered topologically trivial, is shown to be a ferromagnetic topological insulator for a few percent Mn excess. i) Ferromagnetic hysteresis with record Curie temperature of 45-50 K, ii) out-of-plane magnetic anisotropy, iii) a 2D Dirac cone with the Dirac point close to the Fermi level, iv) out-of-plane spin polarization as revealed by photoelectron spectroscopy, and v) a magnetically induced bandgap closing at the Curie temperature, demonstrated by scanning tunneling spectroscopy (STS), are shown. Moreover, a critical exponent of the magnetization beta approximate to 1 is found, indicating the vicinity of a quantum critical point. Ab initio calculations reveal that Mn-Sb site exchange provides the ferromagnetic interlayer coupling and the slight excess of Mn nearly doubles the Curie temperature. Remaining deviations from the ferromagnetic order open the inverted bulk bandgap and render MnSb2Te4 a robust topological insulator and new benchmark for magnetic topological insulators.

Journal ArticleDOI
TL;DR: More than 200 different spinels, with the general formula AB 2 X 4, have been identified or synthesized in polycrystalline or single-celline form as discussed by the authors.

Journal ArticleDOI
Rui Li1, Jiawei Jiang1, Xiaohui Shi1, Wenbo Mi1, Haili Bai1 
TL;DR: In this paper, the electronic structure and magnetic properties of 2D Janus magnetic materials with high spin polarization are investigated, and the results provide an example of the two-dimensional half-metallic materials and enrich the 2D magnetic material library.
Abstract: Two-dimensional (2D) ferromagnetic materials with high spin polarization are highly desirable for spintronic devices. 2D Janus materials exhibit novel properties due to their broken symmetry. However, the electronic structure and magnetic properties of 2D Janus magnetic materials with high spin polarization are still unclear. Inspired by the successful synthesis of a ferromagnetic FeCl2 monolayer and 2D Janus MoSSe and WSSe, we systematically study the electronic structure and magnetic properties of Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) monolayers. Based on the Goodenough-Kanamori-Anderson theory, the ferromagnetism stems from the superexchange interaction mediated by Fe-X/Y-Fe bonds. The band gaps of spin-up channels are large enough (>4 eV) to prevent spin flipping, which is beneficial for spintronic devices. Additionally, the sizable magnetocrystalline anisotropy energy (MAE) indicates that Janus FeXY monolayers are suitable for information storage. More importantly, the half-metallic character is still kept in Janus FeXY monolayers, and their magnetic properties are enhanced by the biaxial compressive strain. The MAE of FeClI and FeBrI increases by 1 order of magnitude, and the Curie temperature of FeXY monolayers enhances by 100%. These results provide an example of the 2D Janus half-metallic materials and enrich the 2D magnetic material library.

Journal ArticleDOI
TL;DR: This review of van der Waals materials exhibits great potential in spintronics, arising from their excellent spin transportation, large spin–orbit coupling, and high‐quality interfaces.
Abstract: van der Waals (vdW) materials exhibit great potential in spintronics, arising from their excellent spin transportation, large spin-orbit coupling, and high-quality interfaces. The recent discovery of intrinsic vdW antiferromagnets and ferromagnets has laid the foundation for the construction of all-vdW spintronic devices, and enables the study of low-dimensional magnetism, which is of both technical and scientific significance. In this review, several representative families of vdW magnets are introduced, followed by a comprehensive summary of the methods utilized in reading out the magnetic states of vdW magnets. Thereafter, it is shown that various electrical, mechanical, and chemical approaches are employed to modulate the magnetism of vdW magnets. Finally, the perspective of vdW magnets in spintronics is discussed and an outlook of future development direction in this field is also proposed.

Journal ArticleDOI
TL;DR: In this article, the growth of 2D Cr3 Te4 films with monolayer thickness is demonstrated at low substrate temperatures (≈100 °C), compatible with Si complementary metal oxide semiconductor technology.
Abstract: The realization of long-range magnetic ordering in 2D systems can potentially revolutionize next-generation information technology. Here, the successful fabrication of crystalline Cr3 Te4 monolayers with room temperature (RT) ferromagnetism is reported. Using molecular beam epitaxy, the growth of 2D Cr3 Te4 films with monolayer thickness is demonstrated at low substrate temperatures (≈100 °C), compatible with Si complementary metal oxide semiconductor technology. X-ray magnetic circular dichroism measurements reveal a Curie temperature (Tc ) of v344 K for the Cr3 Te4 monolayer with an out-of-plane magnetic easy axis, which decreases to v240 K for the thicker film (≈7 nm) with an in-plane easy axis. The enhancement of ferromagnetic coupling and the magnetic anisotropy transition is ascribed to interfacial effects, in particular the orbital overlap at the monolayer Cr3 Te4 /graphite interface, supported by density-functional theory calculations. This work sheds light on the low-temperature scalable growth of 2D nonlayered materials with RT ferromagnetism for new magnetic and spintronic devices.

Journal ArticleDOI
TL;DR: It is demonstrated that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunnelling of magnetization (QTM) and holds the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1.
Abstract: Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the structures, properties, and external controls of 2D magnet materials, as well as the challenges and potential opportunities in this field.
Abstract: Since the discovery of intrinsic ferromagnetism in atomically thin Cr2Gr2Te6 and CrI3 in 2017, research on two-dimensional (2D) magnetic materials has become a highlighted topic. Based on 2D magnetic materials and their heterostructures, exotic physical phenomena at the atomically thin limit have been discovered, such as the quantum anomalous Hall effect, magneto-electric multiferroics, and magnon valleytronics. Furthermore, magnetism in these ultrathin magnets can be effectively controlled by external perturbations, such as electric field, strain, doping, chemical functionalization, and stacking engineering. These attributes make 2D magnets ideal platforms for fundamental research and promising candidates for various spintronic applications. This review aims at providing an overview of the structures, properties, and external controls of 2D magnets, as well as the challenges and potential opportunities in this field.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive theory of the magnetic phases in twisted bilayer chromium trihalides through a combination of first-principles calculations and atomistic simulations is presented.
Abstract: We present a comprehensive theory of the magnetic phases in twisted bilayer chromium trihalides through a combination of first-principles calculations and atomistic simulations. We show that the stacking-dependent interlayer exchange leads to an effective moire field that is mostly ferromagnetic with antiferromagnetic patches. A wide range of noncollinear magnetic phases can be stabilized as a function of the twist angle and Dzyaloshinskii-Moriya interaction as a result of the competing interlayer antiferromagnetic coupling and the energy cost for forming domain walls. In particular, we demonstrate that for small twist angles various skyrmion crystal phases can be stabilized in both CrI3 and CrBr3. Our results provide an interpretation for the recent observation of noncollinear magnetic phases in twisted bilayer CrI3 and demonstrate the possibility of engineering further nontrivial magnetic ground states in twisted bilayer chromium trihalides.

Journal ArticleDOI
TL;DR: In this paper, the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr, was investigated.
Abstract: When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moire bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayers and above can be drastically changed when the magnetic order is switched from the layered antiferromagnetic ground state to a field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by Green’s function–Bethe–Salpeter equation (GW-BSE) calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors. Interlayer hybridization in 2D van der Waals materials can change their properties. Here, it is shown that the coupling in CrSBr can be changed from switching the magnetic order from antiferromagnetic to ferromagnetic states.

Journal ArticleDOI
TL;DR: Hu et al. as mentioned in this paper showed that the hybridization between the d electrons of Co atoms and delocalized pz electrons of N/C atoms enhances the conduction-electron mediated long-range magnetic coupling.
Abstract: Graphene is extremely promising for next-generation spintronics applications; however, realizing graphene-based room-temperature magnets remains a great challenge. Here, we demonstrate that robust room-temperature ferromagnetism with TC up to ∼400 K and saturation magnetization of 0.11 emu g−1 (300 K) can be achieved in graphene by embedding isolated Co atoms with the aid of coordinated N atoms. Extensive structural characterizations show that square-planar Co-N4 moieties were formed in the graphene lattices, where atomically dispersed Co atoms provide local magnetic moments. Detailed electronic structure calculations reveal that the hybridization between the d electrons of Co atoms and delocalized pz electrons of N/C atoms enhances the conduction-electron mediated long-range magnetic coupling. This work provides an effective means to induce room-temperature ferromagnetism in graphene and may open possibilities for developing graphene-based spintronics devices. Graphene has shown incredible promise as ideal material for numerous fields; however its use in spintronics has been hampered by the lack of intrinsic magnetism. Here, Hu et al succeed in embedding Cobalt in the graphene lattice, creating robust room-temperature ferromagnetism.

Journal ArticleDOI
TL;DR: In this article, the spin-transport measurements in bilayer graphene evidence a strong spin-charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr).
Abstract: Ultracompact spintronic devices greatly benefit from the implementation of two-dimensional materials that provide large spin polarization of charge current together with long-distance transfer of spin information. Here spin-transport measurements in bilayer graphene evidence a strong spin–charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr). This results in the direct detection of the spin polarization of conductivity (up to 14%) and a spin-dependent Seebeck effect in the magnetic graphene. The efficient electrical and thermal spin–current generation is the most technologically relevant aspect of magnetism in graphene, controlled here by the antiferromagnetic dynamics of CrSBr. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent antiferromagnet, furthermore, enables the read-out of a single magnetic sublattice. The combination of gate-tunable spin-dependent conductivity and Seebeck coefficient with long-distance spin transport in a single two-dimensional material promises ultrathin magnetic memory and sensory devices based on magnetic graphene. Graphene promises long-distance transfer of spin information with concomitant high charge carrier mobility. Proximity coupling of bilayer graphene with the 2D interlayer antiferromagnetic CrSBr now enables active generation of spin currents in graphene both electrically and thermally.

Journal ArticleDOI
TL;DR: In this paper, a tube-in-tube chemical vapor deposition (CVD) growth technology was used for the synthesis of air-stable 2D Cr5 Te8 ultrathin crystals with tunable thickness via CVD growth technology.
Abstract: 2D magnetic materials have aroused widespread research interest owing to their promising application in spintronic devices. However, exploring new kinds of 2D magnetic materials with better stability and realizing their batch synthesis remain challenging. Herein, the synthesis of air-stable 2D Cr5 Te8 ultrathin crystals with tunable thickness via tube-in-tube chemical vapor deposition (CVD) growth technology is reported. The importance of tube-in-tube CVD growth, which can significantly suppress the equilibrium shift to the decomposition direction and facilitate that to the synthesis reaction direction, for the synthesis of high-quality Cr5 Te8 with accurate composition, is highlighted. By precisely adjusting the growth temperature, the thickness of Cr5 Te8 nanosheets is tuned from ≈1.2 nm to tens of nanometers, with the morphology changing from triangles to hexagons. Furthermore, magneto-optical Kerr effect measurements reveal that the Cr5 Te8 nanosheet is ferromagnetic with strong out-of-plane spin polarization. The Curie temperature exhibits a monotonic increase from 100 to 160 K as the Cr5 Te8 thickness increases from 10 to 30 nm and no apparent variation in surface roughness or magnetic properties after months of exposure to air. This study provides a robust method for the controllable synthesis of high-quality 2D ferromagnetic materials, which will facilitate research progress in spintronics.

Journal ArticleDOI
TL;DR: It is reported that, surprisingly, an in-plane current can tune the magnetic state of the nanometer-thin van der Waals ferromagnet Fe3 GeTe2 from a hard magnetic state to a soft magnetic state.
Abstract: Controlling magnetic states by a small current is essential for the next-generation of energy-efficient spintronic devices. However, it invariably requires considerable energy to change a magnetic ground state of intrinsically quantum nature governed by fundamental Hamiltonian, once stabilized below a phase-transition temperature. Here, it is reported that, surprisingly, an in-plane current can tune the magnetic state of the nanometer-thin van der Waals ferromagnet Fe3 GeTe2 from a hard magnetic state to a soft magnetic state. It is a direct demonstration of the current-induced substantial reduction of the coercive field. This surprising finding is possible because the in-plane current produces a highly unusual type of gigantic spin-orbit torque for Fe3 GeTe2 . In addition, a working model of a new nonvolatile magnetic memory based on the principle of the discovery in Fe3 GeTe2 , controlled by a tiny current, is further demonstrated. The findings open up a new window of exciting opportunities for magnetic van der Waals materials with potentially huge impact on the future development of spintronic and magnetic memory.

Journal ArticleDOI
TL;DR: In this paper, non-vdW α-MnSe2 is first delaminated as quasi-2D nanosheets for the study of emerging semiconductor, ferromagnetism and magneto-photoconductivity behaviors.
Abstract: Deficient intrinsic species and suppressed Curie temperatures (Tc) in two-dimensional (2D) magnets are major barriers for future spintronic applications. As an alternative, delaminating non-van der Waals (vdW) magnets can offset these shortcomings and involve robust bandgaps to explore 2D magneto-photoconductivity at ambient temperature. Herein, non-vdW α-MnSe2 is first delaminated as quasi-2D nanosheets for the study of emerging semiconductor, ferromagnetism and magneto-photoconductivity behaviors. Abundant nonstoichiometric surfaces induce the renormalization of the band structure and open a bandgap of 1.2 eV. The structural optimization strengthens ferromagnetic super–exchange interactions between the nearest-neighbor Mn2+, which enables us to achieve a high Tc of 320 K well above room temperature. The critical fitting of magnetization and transport measurements both verify that it is of quasi-2D nature. The above observations are evidenced by multiple microscopic and macroscopic characterization tools, in line with the prediction of first-principles calculations. Profiting from the negative magnetoresistance effect, the self-powered infrared magneto-photoconductivity performance including a responsivity of 330.4 mA W−1 and a millisecond-level response speed are further demonstrated. Such merits stem from the synergistic modulation of magnetic and light fields on photogenerated carriers. This provides a new strategy to manipulate both charge and spin in 2D non-vdW systems and displays their alluring prospects in magneto-photodetection.

Journal ArticleDOI
05 Jan 2021
TL;DR: This work reports a completely planar hypercoordinate metalloborophene (α-FeB3) with high stability, unusual stoichiometry and exceptional magnetoelectronic properties, and pave the way for exploring novel 2D magnetism in boron-based magnetic allotropes.
Abstract: Two-dimensional (2D) magnets simultaneously possessing a high transition temperature and large perpendicular magnetic anisotropy are extremely rare, but essential for highly efficient spintronic applications. By using ab initio and global minimization approaches, we for the first time report a completely planar hypercoordinate metalloborophene (α-FeB3) with high stability, unusual stoichiometry and exceptional magnetoelectronic properties. The α-FeB3 monolayer exhibits room-temperature ferromagnetism (Tc = 480 K), whose origin is first revealed by the B-mediated RKKY interaction in the 2D regime. Its perpendicular magnetic anisotropy is almost six times larger than that of the experimentally realized 2D CrI3 and Fe3GeTe2. Moreover, metallic α-FeB3 shows n- and p-type Dirac transport with a high Fermi velocity in both spin channels. Our results not only highlight a promising 2D ferromagnet for advanced spintronics, but also pave the way for exploring novel 2D magnetism in boron-based magnetic allotropes.

Journal ArticleDOI
TL;DR: This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.
Abstract: The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo0.8Ru0.2Al, reaching 23 microvolts per kelvin. Uranium’s 5f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo0.8Ru0.2Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.

Journal ArticleDOI
TL;DR: In this article, the authors designed an active oxygen evolution reaction (OER) catalysts for water electrolysis, where the spin conservation plays a crucial role in enhancing OER performance.
Abstract: Rational design of active oxygen evolution reaction (OER) catalysts is critical for the overall efficiency of water electrolysis. The differing spin states of the OER reactants and products is one of the factors that slows OER kinetics. Thus, spin conservation plays a crucial role in enhancing OER performance. In this work, ferromagnetic (FM)-antiferromagnetic (AFM) Fe3 O4 @Ni(OH)2 core-shell catalysts are designed. The interfacial FM-AFM coupling of these catalysts facilitates selective removal of electrons with spin direction opposing the magnetic moment of FM core, improving OER kinetics. The shell thickness is found critical in retaining the coupling effect for OER enhancement. The magnetic domain structure of the FM core also plays a critical role. With a multiple domain core, the applied magnetic field aligns the magnetic domains, optimizing the electron transport process. A significant enhancement of OER activity is observed for the multiple domain core catalysts. With a single-domain FM core with ordered magnetic dipoles, the spin-selective electron transport with minimal scattering is facilitated even without an applied magnetic field. A magnetism/OER activity model therefore hypothesizes that depends on two main parameters: interfacial spin coupling and domain structure. These findings provide new design principles for active OER catalysts.

Journal ArticleDOI
TL;DR: In this article, the structural, magneto-electronic, thermoelectric and thermo-physical behavior of Cs2NaMCl6 double perovskites were analyzed.