scispace - formally typeset
Search or ask a question
Topic

Ferromagnetism

About: Ferromagnetism is a research topic. Over the lifetime, 55095 publications have been published within this topic receiving 1211590 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the intrinsic domain magnetization of a ferromagnetic with the external magnetic field was obtained, and an approximation to low temperatures and equivalent to those used by Bloch in his derivation of the ${T}^{1}$ law, were introduced.
Abstract: In this paper, the variation of the intrinsic domain magnetization of a ferromagnetic with the external magnetic field, is obtained. The basis of the treatment is the exchange interaction model amplified by explicit consideration of the dipole-dipole interaction between the atomic magnets. Approximations appropriate to low temperatures and equivalent to those used by Bloch in his derivation of the ${T}^{1}$ law, are introduced. The resultant expression for the intrinsic volume susceptibility decreases slowly with increasing field; at high fields the functional dependence is as the inverse square root of the field. The variation with temperature is linear; at room temperature and for fields of about 4000 gauss, the order of magnitude of the (volume) susceptibility is ${10}^{\ensuremath{-}4}$. The results are compared with experiment and satisfactory agreement is found.

2,884 citations

Journal ArticleDOI
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.

2,743 citations

Journal ArticleDOI
17 Jun 2010-Nature
TL;DR: Real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co 0.5Si using Lorentz transmission electron microscopy reveals a controlled nanometre-scale spin topology, which may be useful in observing unconventional magneto-transport effects.
Abstract: Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.

2,683 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8% is reported, indicating the existence of ferromagnetic long-range ordering.
Abstract: Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.

2,302 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
98% related
Band gap
86.8K papers, 2.2M citations
94% related
Thin film
275.5K papers, 4.5M citations
92% related
Amorphous solid
117K papers, 2.2M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,198
20224,398
20212,065
20202,236
20192,160
20182,114