scispace - formally typeset
Search or ask a question
Topic

Ferromagnetism

About: Ferromagnetism is a research topic. Over the lifetime, 55095 publications have been published within this topic receiving 1211590 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, permanent magnets can be made of composite materials consisting of two suitably dispersed ferromagnetic and mutually exchange-coupled phases, one of which is hard magnetic in order to provide a high coercive field, while the other may be soft magnetic, just providing a high saturation J/sub s/, and should envelop the hard phase regions to prevent their corrosion.
Abstract: It is proposed that permanent magnets can be made of composite materials consisting of two suitably dispersed ferromagnetic and mutually exchange-coupled phases, one of which is hard magnetic in order to provide a high coercive field, while the other may be soft magnetic, just providing a high saturation J/sub s/, and should envelop the hard phase regions in order to prevent their corrosion. A general theoretical treatment of such systems shows that one may expect, besides a high energy product (BH)/sub max/, a reversible demagnetization curve (exchange-spring) and, in certain cases, an unusually high isotropic remanence ratio B/sub r//J/sub s/, while the required volume fraction of the hard phase may be very low, on the order of 10%. The technological realization of such materials is shown to be based on the principle that all phases involved must emerge from a common metastable matrix phase in order to be crystallographically coherent and consequently magnetically exchange coupled. >

2,283 citations

Journal ArticleDOI
TL;DR: In this article, simple rules are set up giving approximate analytic atomic wave functions for all the atoms, in any stage of ionization, in analogy with the method of Zener for the atoms from Li to F, and these are applied to x-ray levels, sizes of atoms and ions, diamagnetic susceptibility, etc.
Abstract: In analogy with the method of Zener for the atoms from Li to F, simple rules are set up giving approximate analytic atomic wave functions for all the atoms, in any stage of ionization. These are applied to x-ray levels, sizes of atoms and ions, diamagnetic susceptibility, etc. In connection with ferromagnetism it is shown that if this really depends on the existence of incomplete shells within the atoms, rather far apart in the crystal, then the metals most likely to show it would be Fe, Co, Ni, and alloys of Mn and Cu (Heusler alloys).

2,191 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that mobile electrons always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles.
Abstract: This paper discusses some effects of mobile electrons in some antiferromagnetic lattices. It is shown that these electrons (or holes) always give rise to a distortion of the ground state spin arrangement, since electron transfer lowers the energy by a term of first order in the distortion angles. In the most typical cases this results in: (a) a nonzero spontaneous moment in low fields; (b) a lack of saturation in high fields; (c) simultaneous occurrence of "ferromagnetic" and "antiferromagnetic" lines in neutron diffraction patterns; (d) both ferromagnetic and antiferromagnetic branches in the spin wave spectra. Some of these properties have indeed been observed in compounds of mixed valency such as the manganites with low ${\mathrm{Mn}}^{4+}$ content. Similar considerations apply at finite temperatures, at least for the (most widespread) case where only the bottom of the carrier band is occupied at all temperatures of interest. The free energy is computed by a variational procedure, using simple carrier wave functions and an extension of the molecular field approximation. It is found that the canted arrangements are stable up to a well-defined temperature ${T}_{1}$. Above ${T}_{1}$ the system is either antiferromagnetic or ferromagnetic, depending upon the relative amount of mobile electrons. This behavior is not qualitatively modified when the carriers which are responsible for double exchange fall into bound states around impurity ions of opposite charge. Such bound states, however, will give rise to local inhomogeneities in the spin distortion, and to diffuse magnetic peaks in the neutron diffraction pattern. The possibility of observing these peaks and of eliminating the spurious spin-wave scattering is discussed in an Appendix.

2,073 citations

Journal ArticleDOI
Tadao Kasuya1
TL;DR: In this article, the T3/2 law for the temperature dependence of the magnetization of ferromagnetism is shown to be applicable up to very high temperatures, and this result is in good agreement with the results of experiments on metallic ferromagnetic magnetization.
Abstract: The importance to the mechanism of ferromagnetim of exchange interaction between conduction electrons and unfilled inner shell electrons (called s-d interaction) has been pointed out by Zener. Especially for rare earth metals, this interaction seems to be the only mechanism which can cause ferroand antiferromagnetism. However Zener's works are unsatistisfactory because his model is phenomenological and moreover does not involve antiferromagnetism and spin wave mode. Our paper considers this s-d interaction on a more rigorous basis. By a certain approximation, there appear long range eychange type interactions between d-electron spins and, in certain conditions both ferroand antiferromagnetism appear. The excitations of spin wave modes are the same as those in the ordinary modes of the short range exchange force, viz, the energy of the spin wave excitations is proportional to q2 for ferromagnetism and q for antiferromagnetism in the region of small wave vector q. The T3/2 law for the temperature dependence of the magnetization of ferromagnetism is applicable up to very high temperatures, and this result is in good agreement with the results of experiments on metallic ferromagnetism.

1,988 citations

Journal ArticleDOI
TL;DR: The relaxation processes of electrons and spins systems following the absorption of femtosecondoptical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probetechniques and the experimental results are adequately described by a model including three interacting reservoirs.
Abstract: The relaxation processes of electrons and spins systems following the absorption of femtosecond optical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probe techniques. The magnetization of the film drops rapidly during the first picosecond, but different electron and spin dynamics are observed for delays in the range 0--5 ps. The experimental results are adequately described by a model including three interacting reservoirs (electron, spin, and lattice).

1,920 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
98% related
Band gap
86.8K papers, 2.2M citations
94% related
Thin film
275.5K papers, 4.5M citations
92% related
Amorphous solid
117K papers, 2.2M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,198
20224,398
20212,065
20202,236
20192,160
20182,114