scispace - formally typeset
Search or ask a question
Topic

Fetus

About: Fetus is a research topic. Over the lifetime, 21567 publications have been published within this topic receiving 646380 citations. The topic is also known as: foetus & fœtus.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that second‐trimester amniotic fluid (AF) is an abundant source of fetal mesenchymal stem cells (MSCs), and different parts of the human placenta were studied for the presence of either fetal or maternal MSCs.
Abstract: Recently we reported that second-trimester amniotic fluid (AF) is an abundant source of fetal mesenchymal stem cells (MSCs). In this study, we analyze the origin of these MSCs and the presence of MSCs in human-term AF. In addition, different parts of the human placenta were studied for the presence of either fetal or maternal MSCs. We compared the phenotype and growth characteristics of MSCs derived from AF and placenta. Cells from human second-trimester (mean gestational age, 19(+2) [standard deviation, +/- 1(+3)] weeks, n = 10) and term third-trimester (mean gestational age, 38(+4) [standard deviation, +/- 1] weeks, n = 10) AF, amnion, decidua basalis, and decidua parietalis were cultured in M199 medium supplemented with 10% fetal calf serum and endothelial cell growth factor. Cultured cells were immunophenotypically characterized, the adipogenic and osteogenic differentiation capacity was tested, and the growth kinetics were analyzed. The origin of fetal and maternal cells was determined by molecular human leukocyte antigen typing. We successfully isolated MSCs from second-trimester AF, amnion, and decidua basalis as well as term amnion, decidua parietalis, and decidua basalis. In contrast, MSCs were cultured from only 2 out of 10 term AF samples. The phenotype of MSCs cultured from different fetal and maternal parts of the placenta was comparable. Maternal MSCs from second-trimester and term decidua basalis and parietalis showed a significantly higher expansion capacity than that of MSCs from adult bone marrow (p < .05). Our results indicate that both fetal and maternal MSCs can be isolated from the human placenta. Amnion is a novel source of fetal MSCs, likely contributing to the presence of MSCs in AF. Decidua basalis and decidua parietalis are sources for maternal MSCs. The expansion potency from both fetal and maternal placenta-derived MSCs was higher compared with adult bone marrow-derived MSCs.

1,196 citations

Journal ArticleDOI
TL;DR: No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophOBlast MHC ligands.
Abstract: The fetus is considered to be an allograft that, paradoxically, survives pregnancy despite the laws of classical transplantation immunology. There is no direct contact of the mother with the embryo, only with the extraembryonic placenta as it implants in the uterus. No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophoblast MHC ligands.

1,140 citations

Journal ArticleDOI
TL;DR: The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics.
Abstract: Summary Fetal DNA has been detected in maternal plasma during pregnancy. We investigated the clearance of circulating fetal DNA after delivery, using quantitative PCR analysis of the sex-determining region Y gene as a marker for male fetuses. We analyzed plasma samples from 12 women 1–42 d after delivery of male babies and found that circulating fetal DNA was undetectable by day 1 after delivery. To obtain a higher time-resolution picture of fetal DNA clearance, we performed serial sampling of eight women, which indicated that most women (seven) had undetectable levels of circulating fetal DNA by 2 h postpartum. The mean half-life for circulating fetal DNA was 16.3 min (range 4–30 min). Plasma nucleases were found to account for only part of the clearance of plasma fetal DNA. The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics. These results also may have implications for the study of other types of nonhost DNA in plasma, such as circulating tumor-derived and graft-derived DNA in oncology and transplant patients, respectively.

1,110 citations

Journal ArticleDOI
David Haig1
TL;DR: The placenta is able to release hormones and other substances directly into the maternal circulation as discussed by the authors, which can be interpreted as an attempt by a poorly nourished fetus to increase its supply of nutrients by increasing the resistance of its mother's peripheral circulation.
Abstract: Pregnancy has commonly been viewed as a cooperative interaction between a mother and her fetus. The effects of natural selection on genes expressed in fetuses, however, may be opposed by the effects of natural selection on genes expressed in mothers. In this sense, a genetic conflict can be said to exist between maternal and fetal genes. Fetal genes will be selected to increase the transfer of nutrients to their fetus, and maternal genes will be selected to limit transfers in excess of some maternal optimum. Thus a process of evolutionary escalation is predicted in which fetal actions are opposed by maternal countermeasures. The phenomenon of genomic imprinting means that a similar conflict exists within fetal cells between genes that are expressed when maternally derived, and genes that are expressed when paternally derived. During implantation, fetally derived cells (trophoblast) invade the maternal endometrium and remodel the endometrial spiral arteries into low-resistance vessels that are unable to constrict. This invasion has three consequences. First, the fetus gains direct access to its mother's arterial blood. Therefore, a mother cannot reduce the nutrient content of blood reaching the placenta without reducing the nutrient supply to her own tissues. Second, the volume of blood reaching the placenta becomes largely independent of control by the local maternal vasculature. Third, the placenta is able to release hormones and other substances directly into the maternal circulation. Placental hormones, including human chorionic gonadotropin (hCG) and human placental lactogen (hPL), are predicted to manipulate maternal physiology for fetal benefit. For example, hPL is proposed to act on maternal prolactin receptors to increase maternal resistance to insulin. If unopposed, the effect of hPL would be to maintain higher blood glucose levels for longer periods after meals. This action, however, is countered by increased maternal production of insulin. Gestational diabetes develops if the mother is unable to mount an adequate response to fetal manipulation. Similarly, fetal genes are predicted to enhance the flow of maternal blood through the placenta by increasing maternal blood pressure. Preeclampsia can be interpreted as an attempt by a poorly nourished fetus to increase its supply of nutrients by increasing the resistance of its mother's peripheral circulation.

1,041 citations

Journal ArticleDOI
27 Jun 2002-Nature
TL;DR: This study provides experimental evidence for imprinted gene action in the placenta that directly controls the supply of maternal nutrients to the fetus, and supports the genetic conflict theory of imprinting.
Abstract: Imprinted genes in mammals are expressed from only one of the parental chromosomes, and are crucial for placental development and fetal growth1,2,3,4. The insulin-like growth factor II gene (Igf2) is paternally expressed in the fetus and placenta5. Here we show that deletion from the Igf2 gene of a transcript (P0)6,7 specifically expressed in the labyrinthine trophoblast of the placenta leads to reduced growth of the placenta, followed several days later by fetal growth restriction. The fetal to placental weight ratio is thus increased in the absence of the P0 transcript. We show that passive permeability for nutrients of the mutant placenta is decreased, but that secondary active placental amino acid transport is initially upregulated, compensating for the decrease in passive permeability. Later the compensation fails and fetal growth restriction ensues. Our study provides experimental evidence for imprinted gene action in the placenta that directly controls the supply of maternal nutrients to the fetus, and supports the genetic conflict theory of imprinting8. We propose that the Igf2 gene, and perhaps other imprinted genes, control both the placental supply of, and the genetic demand for, maternal nutrients to the mammalian fetus.

1,009 citations


Network Information
Related Topics (5)
Pregnancy
163.9K papers, 4M citations
94% related
Gestational age
31.6K papers, 974.3K citations
91% related
Birth weight
33.1K papers, 1.1M citations
86% related
Low birth weight
27.9K papers, 944.6K citations
85% related
Estrogen
40.7K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20249
20232,267
20224,825
2021623
2020515
2019506