scispace - formally typeset
Search or ask a question

Showing papers on "Fiber published in 2009"


Journal ArticleDOI
TL;DR: In this article, the use of pretreated natural fibers in polymer matrix-based composites has been reviewed and the effect of surface modification of natural fibers on the properties of fibers and fiber reinforced polymer composites is also discussed.
Abstract: In recent years, natural fibers reinforced composites have received much attention because of their lightweight, nonabrasive, combustible, nontoxic, low cost and biodegradable properties. Among the various natural fibers; flax, bamboo, sisal, hemp, ramie, jute, and wood fibers are of particular interest. A lot of research work has been performed all over the world on the use of natural fibers as a reinforcing material for the preparation of various types of composites. However, lack of good interfacial adhesion, low melting point, and poor resistance towards moisture make the use of natural fiber reinforced composites less attractive. Pretreatments of the natural fiber can clean the fiber surface, chemically modify the surface, stop the moisture absorption process, and increase the surface roughness. Among the various pretreatment techniques, graft copolymerization and plasma treatment are the best methods for surface modification of natural fibers. Graft copolymers of natural fibers with vinyl monomers provide better adhesion between matrix and fiber. In the present article, the use of pretreated natural fibers in polymer matrix-based composites has been reviewed. Effect of surface modification of natural fibers on the properties of fibers and fiber reinforced polymer composites has also been discussed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

1,201 citations


Journal ArticleDOI
TL;DR: C cultured rat hippocampus-derived adult NSCs on laminin-coated electrospun Polyethersulfone fiber meshes with average fiber diameters indicated fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.

698 citations


Journal ArticleDOI
TL;DR: In this article, the most important natural fibers are jute, flax, and coir and their novel processing technics to develop natural fiber reinforced composites are also described.
Abstract: This review article describes the recent developments of natural fiber reinforced polypropylene (PP) composites. Natural fibers are low-cost, recyclable, and eco-friendly materials. Due to eco-friendly and bio-degradability characteristics of these natural fibers, they are considered as strong candidates to replace the conventional glass and carbon fibers. The chemical, mechanical, and physical properties of natural fibers have distinct properties; depending upon the cellulosic content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Chemical and physical modification methods were incorporated to improve the fiber—matrix adhesion resulting in the enhancement of mechanical properties of the composites. The most important natural fibers are jute, flax, and coir and their novel processing technics to develop natural fiber reinforced composites are also described.

656 citations


Journal ArticleDOI
TL;DR: Experimental results lead to the hypothesis that even longer continuous nanofibers over 50 cm could be collected if the size of the parallel plates were increased, and extending the maximum fiber length that can be collected across parallel plates could expand the applications of electrospinning.

557 citations


Journal ArticleDOI
TL;DR: In this article, a solution blow spinning technique was developed using elements of both electrospinning and melt blowing technologies as an alternative method for making non-woven webs of micro- and nanofibers with diameters comparable with those made by the electro-spinning process with the advantage of having a fiber production rate measured by the polymer injection rate.
Abstract: A solution blow spinning technique was developed using elements of both electrospinning and melt blowing technologies as an alternative method for making non-woven webs of micro- and nanofibers with diameters comparable with those made by the electrospinning process with the advantage of having a fiber production rate (measured by the polymer injection rate) several times higher. The diameters of fibers produced ranged from 40 nm for poly(lactic acid) to several micrometers for poly(methyl methacrylate). This solution blow spinning method uses a syringe pump to deliver a polymer solution to an apparatus consisting of concentric nozzles whereby the polymer solution is pumped through the inner nozzle while a constant, high velocity gas flow is sustained through the outer nozzle. Analysis of the process showed that pressure difference and shearing at the gas/solution interface jettisoned multiple strands of polymer solution towards a collector. During flight, the solvent component of the strands rapidly evaporates forming a web of micro and nanofibers. The effect of injection rate, gas flow pressure, polymer concentration, working distance, and protrusion distance of the inner nozzle was investigated. Polymer type and concentration had a greater effect on fiber diameter than the other parameters tested. Injection rate, gas flow pressure, and working distance affected fiber production rate and/or fiber morphology. Fibers were easily formed into yarns of micro- and nanofibers or non-woven films that could be applied directly onto biological tissue or collected in sheets on a rotating drum. Indeed, virtually any type of target could be used for fiber collection.

514 citations


Journal ArticleDOI
TL;DR: Near-field, frequency-resolved characterization with high spatial resolution of the amplitude and phase of the modal structure proves that the fiber is single-moded over a wide frequency range, and the authors see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber.
Abstract: We report on a new class of polymer photonic crystal fibers for low-loss guidance of THz radiation. The use of the cyclic olefin copolymer Topas, in combination with advanced fabrication technology, results in bendable THz fibers with unprecedented low loss and low material dispersion in the THz regime.We demonstrate experimentally how the dispersion may be engineered by fabricating both high- and low-dispersion fibers with zero-dispersion frequency in the regime 0.5-0.6 THz. Near-field, frequencyresolved characterization with high spatial resolution of the amplitude and phase of the modal structure proves that the fiber is single-moded over a wide frequency range, and we see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber. Transmission spectroscopy demonstrates low-loss propagation (< 0.1 dB/cm loss at 0.6 THz) over a wide frequency range.

417 citations


Journal ArticleDOI
23 Jan 2009-JOM
TL;DR: In this article, the advantages and drawbacks of applying natural fibers, some of them relatively unknown, as reinforcements of PMCs are discussed in terms of the effect of surface micromorphology and the fiber/matrix interaction.
Abstract: Natural fibers, especially lignocellulosic fibers extracted from plants, are gaining attention as polymer-matrix composite (PMC) reinforcements due to their comparative advantages over synthetic fibers. Natural fibers are relatively low cost, renewable, and biodegradable. Their production systems are associated with low equipment wear and are energy efficient. In addition, the incorporation of lignocellulosic fibers into PMCs may significantly improve some mechanical properties. This article presents an overview of the advantages and drawbacks of applying natural fibers, some of them relatively unknown, as reinforcements of PMCs. The mechanical behavior of composites incorporated with selected fibers is discussed in terms of the effect of surface micromorphology and the fiber/matrix interaction.

352 citations


Journal ArticleDOI
Xiaoyan Cui1, Zhi-Yuan Gu1, Dong-Qing Jiang1, Yan Li1, He-Fang Wang1, Xiu-Ping Yan1 
TL;DR: The first example of the utilization of MOFs for solid-phase microextraction (SPME) is reported, with MOF-199 with unique pores and open metal sites employed as the coating for SPME fiber to extract volatile and harmful benzene homologues.
Abstract: Metal−organic frameworks (MOFs) have received great attention due to their fascinating structures and intriguing potential applications in various fields. Herein, we report the first example of the utilization of MOFs for solid-phase microextraction (SPME). MOF-199 with unique pores and open metal sites (Lewis acid sites) was employed as the coating for SPME fiber to extract volatile and harmful benzene homologues. The SPME fiber was fabricated by in situ hydrothermal growth of thin MOF-199 films on etched stainless steel wire. The MOF-199-coated fiber not only offered large enhancement factors from 19 613 (benzene) to 110 860 (p-xylene), but also exhibited wide linearity with 3 orders of magnitude for the tested benzene homologues. The limits of detection for the benzene homologues were 8.3−23.3 ng L−1. The relative standard deviation (RSD) for six replicate extractions using one SPME fiber ranged from 2.0% to 7.7%. The fiber-to-fiber reproducibility for three parallel prepared fibers was 3.5%−9.4% (RSD)...

346 citations


Patent
09 Jun 2009
TL;DR: In this article, the authors proposed a fiber strand for an implantable supporting body comprising at least two individual fibers, each shorter in their longitudinal extent than the longitudinal extent of the fiber strand.
Abstract: The invention relates to a fiber strand ( 10 ) for an implantable supporting body ( 100 ) comprising at least two individual fibers ( 12 ). The at least two individual fibers ( 12 ) are each shorter in their longitudinal extent than the longitudinal extent ( 14 ) of the fiber strand, and in their transverse extent they are each thinner than the transverse extent ( 16 ) of the fiber strand.

339 citations


Journal ArticleDOI
TL;DR: In this article, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India, which can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

338 citations


Journal ArticleDOI
TL;DR: In this work, palm and coir fiber reinforced polypropylene bio-composites were manufactured using a single extruder and injection molding machine and 30% fiber reinforced composites had the optimum set of mechanical properties.

Journal ArticleDOI
12 Aug 2009-Polymer
TL;DR: In this paper, a uniform, bead-free fiber production process is developed by optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and distance between needle tip to collector.

Journal ArticleDOI
TL;DR: In this article, Salimian et al. examined the mechanical properties such as tensile, flexural and impact strength of fiber-reinforced composites and found that the permanganate treatment caused a reduction in the impact strength.
Abstract: Sisal fibers were subjected to various chemical and physical modifications such as mercerization, heating at 100 °C, permanganate treatment, benzoylation and silanization to improve the interfacial bonding with matrix. Composites were prepared by these fibers as reinforcement, using resin transfer molding (RTM). The mechanical properties such as tensile, flexural and impact strength were examined. Mercerized fiber-reinforced composites showed 36% of increase in tensile strength and 53% in Young’s modulus while the permanganate treated fiber-reinforced composites performed 25% increase in flexural strength. However, in the case of impact strength, the treatment has been found to cause a reduction. The water absorption study of these composites at different temperature revealed that it is less for the treated fiber-reinforced composites at all temperatures compared to the untreated one. SEM studies have been used to complement the results emanated from the evaluation of mechanical properties.

Journal ArticleDOI
TL;DR: In this paper, the geometrical and mechanical properties and chemical composition of different basalt and glass fibers have been investigated and tensile tests were performed on short basalt fiber made by melt blow.
Abstract: The geometrical and mechanical properties and chemical composition of different basalt and glass fibers have been investigated. Tensile tests were performed on short basalt fiber made by melt blowi...

Journal ArticleDOI
TL;DR: In this article, a short carbon fiber reinforced polypropylene (SCF/PP) composite was prepared with melt blending and hot-pressing techniques, and the thermomechanical properties of this composite were investigated taking into account the combined effect of mean fiber length.

Journal ArticleDOI
TL;DR: Together, this work presents methods by which to produce highly aligned fiber scaffolds efficiently and techniques for assessing neurite outgrowth on different Fiber scaffolds, while suggesting that crossing fibers may be detrimental in fostering efficient, directed axonal outgrowth.
Abstract: Aligned, electrospun polymer fibers have shown considerable promise in directing regenerating axons in vitro and in vivo. However, in several studies, final electrospinning parameters are presented for producing aligned fiber scaffolds, and alignment where minimal fiber crossing occurs is not achieved. Highly aligned species are necessary for neural tissue engineering applications to ensure that axonal extension occurs through a regenerating environment efficiently. Axonal outgrowth on fibers that deviate from the natural axis of growth may delay axonal extension from one end of a scaffold to the other. Therefore, producing aligned fiber scaffolds with little fiber crossing is essential. In this study, the contributions of four electrospinning parameters (collection disk rotation speed, needle size, needle tip shape and syringe pump flow rate) were investigated thoroughly with the goal of finding parameters to obtain highly aligned electrospun fibers made from poly-L-lactic acid (PLLA). Using an 8 wt% PLLA solution in chloroform, a collection disk rotation speed of 1000 revolutions per minute (rpm), a 22 gauge, sharp-tip needle and a syringe pump rate of 2 ml h(-1) produced highly aligned fiber (1.2-1.6 microm in diameter) scaffolds verified using a fast Fourier transform and a fiber alignment quantification technique. Additionally, the application of an insulating sheath around the needle tip improved the rate of fiber deposition (electrospinning efficiency). Optimized scaffolds were then evaluated in vitro using embryonic stage nine (E9) chick dorsal root ganglia (DRGs) and rat Schwann cells (SCs). To demonstrate the importance of creating highly aligned scaffolds to direct neurite outgrowth, scaffolds were created that contained crossing fibers. Neurites on these scaffolds were directed down the axis of the aligned fibers, but neurites also grew along the crossed fibers. At times, these crossed fibers even stopped further axonal extension. Highly aligned PLLA fibers generated under optimized electrospinning conditions guided neurite and SC growth along the aligned fibers. Schwann cells demonstrated the bipolar phenotype seen along the fibers. Using a novel technique to determine fiber density, an increase in fiber density correlated to an increase in the number of neurites, but average neurite length was not statistically different between the two different fiber densities. Together, this work presents methods by which to produce highly aligned fiber scaffolds efficiently and techniques for assessing neurite outgrowth on different fiber scaffolds, while suggesting that crossing fibers may be detrimental in fostering efficient, directed axonal outgrowth.

Journal ArticleDOI
TL;DR: In this article, the variation of mechanical properties such as tensile, flexural, and impact strengths of roselle and sisal fibers hybrid polyester composite at dry and wet conditions were studied.
Abstract: In this work, the variation of mechanical properties such as tensile, flexural, and impact strengths of roselle and sisal fibers hybrid polyester composite at dry and wet conditions were studied. The composites of roselle/sisal polyester-based hybrid composites with different weight% of fibers were prepared. Roselle and sisal fibers at a ratio of 1:1 had been incorporated in unsaturated polyester resin at various fiber lengths. When the fiber content and length of the roselle and sisal fibers were increased, the tensile and flexural strength of the composite increased. When the samples were subjected to moisture environment, decrease in tensile and flexural strength was observed. The maximum percentage of strength reductions in tensile and flexural strength were observed for the composites having the fiber length of 150 mm and 30 wt% fiber content. For impact strength, it was with the composites of 20 wt% and 150 mm at wet conditions compared to dry conditions. The percentage of strength reductions increased with fiber content and length in wet conditions. A scatter in the impact strength values was identified on both the conditions. The moisture absorption characteristics of the natural fibers are very important to produce the natural fiber hybrid composite materials with the positive hybrid effect. The experimental results are compared with theoretical and empirical or statistical results and found to be in good agreement.

Journal ArticleDOI
TL;DR: In this paper, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD).

Journal ArticleDOI
TL;DR: Coir fibers received three treatments, namely washing with water, alkali treatment (mercerization) and bleaching, which produced surface modifications and improved the thermal stability of the fibers and consequently of the composites.

Journal ArticleDOI
TL;DR: In this article, the authors review rare-earth-doped chalcogenide fiber for mid-and long-wave IR lasers, and highly nonlinear chalgogenide fibers and photonic crystal fiber for wavelength conversion in the mid and longwave IR.
Abstract: The Naval Research Laboratory (NRL) is developing chalcogenide glass fibers for applications in the mid-and long-wave IR wavelength regions from 2 to 12 mum. The chalcogen glasses (i.e., glasses based on the elements S, Se, and Te) are transparent in the IR, possess low phonon energies, are chemically durable, and can be drawn into fiber. Both conventional solid core/clad and microstructured fibers have been developed. Chalcogenide glass compositions have been developed that allow rare earth doping to enable rare-earth-doped fiber lasers in the IR. Also, highly nonlinear compositions have been developed with nonlinearities ~1000times silica that enables nonlinear wavelength conversion from the near IR to the mid-and long-wave IR. In this paper, we review rare-earth-doped chalcogenide fiber for mid-and long-wave IR lasers, and highly nonlinear chalcogenide fiber and photonic crystal fiber for wavelength conversion in the mid-and long-wave IR.

Journal ArticleDOI
TL;DR: In this paper, a fiber orientation model that incorporates anisotropic rotary diffusion was developed for composites with long discontinuous fibers, which is suitable for use in mold filling and other flow simulations, and it gives improved predictions of fiber orientation for injection molded long-fiber composites.
Abstract: The Folgar–Tucker model, which is widely-used to predict fiber orientation in injection-molded composites, accounts for fiber–fiber interactions using isotropic rotary diffusion. However, this model does not match all aspects of experimental fiber orientation data, especially for composites with long discontinuous fibers. This paper develops a fiber orientation model that incorporates anisotropic rotary diffusion. From kinetic theory we derive the evolution equation for the second-order orientation tensor, correcting some errors in earlier treatments. The diffusivity is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Model parameters are selected by matching the experimental steady-state orientation in simple shear flow, and by requiring stable steady states and physically realizable solutions. Also, concentrated fiber suspensions align more slowly with respect to strain than models based on Jeffery's equation, and we incorporate this behavior in an objective way. The final model is suitable for use in mold filling and other flow simulations, and it gives improved predictions of fiber orientation for injection molded long-fiber composites.

Journal ArticleDOI
TL;DR: A bidirectional fiber optic probe for the detection of surface-enhanced Raman scattering (SERS) features an array of gold optical antennas designed to enhance Raman signals, while the other facet of the fiber is used for the input and collection of light.
Abstract: This paper reports a bidirectional fiber optic probe for the detection of surface-enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signals, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of “hot spots” generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring h...

Journal ArticleDOI
TL;DR: In this article, the interior porosity of polystyrene fibers was found to be highly porous rather than consolidated, despite the smooth and nonporous appearance of the fiber surfaces, and the resulting morphology is a consequence of relatively rapid diffusion of water into the jet, leading to a liquid−liquid phase separation that precedes solidification due to evaporation of DMF from the jet.
Abstract: Submicron diameter fibers of polystyrene are electrospun from solutions in dimethylformamide (DMF). When electrospun in a high-humidity environment, the interior of these fibers was found to be highly porous rather than consolidated, despite the smooth and nonporous appearance of the fiber surfaces. The formation of interior porosity is attributed to the miscibility of water, a nonsolvent for the polymers in solution, with DMF. The resulting morphology is a consequence of the relatively rapid diffusion of water into the jet, leading to a liquid−liquid phase separation that precedes solidification due to evaporation of DMF from the jet. When electrospun in a low-humidity environment, the fibers exhibit a wrinkled morphology that can be explained by a buckling instability. Understanding which morphology forms under a given set of conditions is achieved through the comparison of three characteristic times: the drying time, the buckling time, and the phase separation time. The morphology has important consequ...

Journal ArticleDOI
TL;DR: Results indicate that electrically conductive substrates can modulate the induction of myoblasts into myotube formation without additional electrical stimulation, suggesting that these fibers may have potential as a temporary substrate for skeletal tissue engineering.

Journal ArticleDOI
TL;DR: In this article, the authors investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices.
Abstract: This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005–20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1–10 μm) fraction, whereas the nano fraction contributed ~10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm−3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm−3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

Journal ArticleDOI
TL;DR: In this article, a two-dimensional measurement of each fiber of the substrate using a wet imaging technique was used to estimate the substrate external surface based on a cylinder model and the substrate specific surface and mechanical milling energy consumption were then correlated to enzymatic hydrolysis glucose yield.

Journal ArticleDOI
TL;DR: Compared to the case of grafted nanocrystals, the unmodified ones imparted better morphological homogeneity to the nanofibrillar structure as well as thermal and mechanical properties of filled and unfilled nanofibers after reinforcement with unmodified CNXs.
Abstract: We studied the use of cellulose nanocrystals (CNXs) obtained after acid hydrolysis of ramie cellulose fibers to reinforce poly(e-caprolactone) (PCL) nanofibers. Chemical grafting with low-molecular-weight PCL diol onto the CNXs was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Grafting was confirmed via infrared spectroscopy and thermogravimetric analyses. The polymer matrix consisted of electrospun nanofibers that were collected as nonwoven webs. The morphology as well as thermal and mechanical properties of filled and unfilled nanofibers were elucidated by scanning electron microscopy, differential scanning calorimetry, and dynamic mechanical analysis, respectively. The addition of CNXs into PCL produced minimal changes in the thermal behavior of the electrospun fibers. However, a significant improvement in the mechanical properties of the nanofibers after reinforcement with unmodified CNXs was confirmed. Fiber webs from PCL reinforced with 2.5% unmodified CNXs sho...

Journal ArticleDOI
TL;DR: In this article, a hybrid biocomposites based upon a biodegradable poly(lactic acid) (PLA) matrix reinforced with microfibrillated cellulose (MFC) and bamboo fiber bundles was developed.
Abstract: In this research we develop novel hybrid biocomposites based upon a biodegradable poly(lactic acid) (PLA) matrix reinforced with microfibrillated cellulose (MFC) and bamboo fiber bundles. Due to the relative difference in scale between microfibrillated cellulose and bamboo, a hierarchy of reinforcement is created where bamboo fiber bundles are the primary load-carrying reinforcement and cellulose creates an interphase in the polymer matrix around the bamboo fiber that prevents sudden crack growth. The influence of MFC dispersion on the properties of the PLA matrix was investigated and substantial improvements in the strain energy until fracture observed. By adding just 1 wt% of MFC with a high degree of dispersion an increase in fracture energy of nearly 200% was obtained. In the hybrid bamboo/MFC/PLA composites there is also a dramatic change in the fracture morphology around the bamboo fiber bundles.

Journal ArticleDOI
TL;DR: A 24 W liquid-cooled CW 3 microm fiber laser with a multimode-core Er-doped ZBLAN fiber with stable high-power operation was demonstrated, and this is the highest output power obtained by a 3 micron fiber laser.
Abstract: A 24 W liquid-cooled CW 3 microm fiber laser with a multimode-core Er-doped ZBLAN fiber has been developed. The output power of 24 W and an optical-to-optical efficiency of 14.5% (with respect to incident pump power) were obtained with 975 nm diode pumping. Efficient cooling was implemented by a combination of fluid cooling over the entire length of the fiber and conductive cooling at both end faces of the fiber. Consequently, stable high-power operation was demonstrated. To our knowledge, this is the highest output power obtained by a 3 microm fiber laser. Furthermore, the high power can be further scaled up, since the output power in the present work is limited only by the available pump power.

Journal ArticleDOI
01 Mar 2009-Carbon
TL;DR: In this article, an in-depth study of CNT growth on commercially-available woven alumina fibers, and achieve uniform growth of dense aligned CNTs on commercially available cloths up to 5 × 10 cm in area.