scispace - formally typeset
Search or ask a question

Showing papers on "Fiber optic sensor published in 2013"


Journal ArticleDOI
TL;DR: In this paper, a tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape.
Abstract: Optical fiber gratings have developed into a mature technology with a wide range of applications in various areas, including physical sensing for temperature, strain, acoustic waves and pressure. All of these applications rely on the perturbation of the period or refractive index of a grating inscribed in the fiber core as a transducing mechanism between a quantity to be measured and the optical spectral response of the fiber grating. This paper presents a relatively recent variant of the fiber grating concept, whereby a small tilt of the grating fringes causes coupling of the optical power from the core mode into a multitude of cladding modes, each with its own wavevector and mode field shape. The main consequence of doing so is that the differential response of the modes can then be used to multiply the sensing modalities available for a single fiber grating and also to increase the sensor resolution by taking advantage of the large amount of data available. In particular, the temperature cross-sensitivity and power source fluctuation noise inherent in all fiber grating designs can be completely eliminated by referencing all the spectral measurements to the wavelength and power level of the core mode back-reflection. The mode resonances have a quality factor of 105, and they can be observed in reflection or transmission. A thorough review of experimental and theoretical results will show that tilted fiber Bragg gratings can be used for high resolution refractometry, surface plasmon resonance applications, and multiparameter physical sensing (strain, vibration, curvature, and temperature).

564 citations


Journal ArticleDOI
TL;DR: A figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems and offers the research community and potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.
Abstract: A thorough analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors is presented. An analytical expression is derived to estimate the error on the determination of the Brillouin peak gain frequency, based for the first time on real experimental conditions. This expression is experimentally validated, and describes how this frequency uncertainty depends on measurement parameters, such as Brillouin gain linewidth, frequency scanning step and signal-to-noise ratio. Based on the model leading to this expression and considering the limitations imposed by nonlinear effects and pump depletion, a figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems. This figure-of-merit offers to the research community and to potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.

318 citations


Journal ArticleDOI
TL;DR: An optical fiber magnetic field sensor based on the single-mode-multimode-single-mode (SMS) structure and magnetic fluid (MF) is proposed and demonstrated and investigated.
Abstract: An optical fiber magnetic field sensor based on the single-mode-multimode-single-mode (SMS) structure and magnetic fluid (MF) is proposed and demonstrated. By using a piece of no-core fiber as the multimode waveguide in the SMS structure and MF sealed in a capillary tube as the magnetic sensitive media, which totally immersing the no-core fiber, an all-fiber magnetic sensor was fabricated. Interrogation of the magnetic field strength can be achieved either by measuring the dip wavelength shift of the transmission spectrum or by detecting the transmission loss at a specific wavelength. A demonstration sensor with sensitivities up to 905 pm/mT and 0.748 dB/mT was fabricated and investigated. A theoretical model for the design of the proposed device was developed and numerical simulations were performed.

218 citations


Journal ArticleDOI
Jun Ma, Haifeng Xuan, Hoi Lut Ho, Wei Jin, Yuanhong Yang1, Shangchun Fan1 
TL;DR: In this paper, a fiber-optic Fabry-Perot acoustic sensor with a ~100-nmthick multilayer graphene diaphragm is reported, which demonstrates a pressureinduced deflection of 1100 nm/kPa and a noise equivalent acoustic signal level of ~ 60 μPa/Hz1/2 at the frequency of 10 kHz.
Abstract: A fiber-optic Fabry-Perot acoustic sensor with a ~100-nm-thick multilayer graphene diaphragm is reported. Acoustic testing demonstrates a pressure-induced deflection of 1100 nm/kPa and a noise equivalent acoustic signal level of ~ 60 μPa/Hz1/2 at the frequency of 10 kHz. The sensor exhibits a flat frequency response from 0.2 to 22 kHz and may be useful for highly sensitive acoustic sensing.

206 citations


Journal ArticleDOI
TL;DR: A system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports, and shows two orders of magnitude enhancements of the focus spot relative to the background.
Abstract: Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micro-mirror device controlled by a field programmable gate array. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

189 citations


Journal ArticleDOI
TL;DR: In the authors' experiments, the structure corroded for ~1620 s is found to have maximum sensing performance and the figure of merit of the sensing system is employed to evaluate the sensing performance comprehensively.
Abstract: Magnetic field sensing based on magnetic fluid (MF) and a singlemode-multimode-singlemode (SMS) fiber structure is proposed. The sensitivity of the proposed sensing system can be enhanced by corroding the cladding of the multimode fiber of the SMS fiber structure. The achieved maximum magnetic field sensitivity of our experimental structures is -16.86 pm/Oe as the fiber is corroded for 1680 s. The visibility of the interference dip for the MF-clad SMS fiber structure decreases with corrosion time. Considering the trade-off between sensitivity and visibility, the figure of merit of the sensing system is employed to evaluate the sensing performance comprehensively. In our experiments, the structure corroded for ~1620 s is found to have maximum sensing performance.

188 citations


Journal ArticleDOI
TL;DR: This work investigates the effect of the fiber geometry on the spectral resolution and bandwidth, and discusses the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra.
Abstract: A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The multimode fiber spectrometer is compact, lightweight, low cost, and provides high resolution with low loss.

187 citations


Journal ArticleDOI
18 Oct 2013-Sensors
TL;DR: The working principles of the most promising MR-compatible FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine.
Abstract: During last decades, Magnetic Resonance (MR)—compatible sensors based on different techniques have been developed due to growing demand for application in medicine. There are several technological solutions to design MR-compatible sensors, among them, the one based on optical fibers presents several attractive features. The high elasticity and small size allow designing miniaturized fiber optic sensors (FOS) with metrological characteristics (e.g., accuracy, sensitivity, zero drift, and frequency response) adequate for most common medical applications; the immunity from electromagnetic interference and the absence of electrical connection to the patient make FOS suitable to be used in high electromagnetic field and intrinsically safer than conventional technologies. These two features further heightened the potential role of FOS in medicine making them especially attractive for application in MRI. This paper provides an overview of MR-compatible FOS, focusing on the sensors employed for measuring physical parameters in medicine (i.e., temperature, force, torque, strain, and position). The working principles of the most promising FOS are reviewed in terms of their relevant advantages and disadvantages, together with their applications in medicine.

180 citations


PatentDOI
TL;DR: In this article, a method for conducting fast Brillouin optical time domain analysis for dynamic sensing of optical fibers is presented, which includes the following stages: injecting a pump pulse signal into the first end of an optical fiber and a probe signal into a second end of the optical fiber, wherein the probe and the pump pulse signals exhibit a frequency difference between them that is appropriate for an occurrence of a Brillourin effect; alternating the frequency of either the probe or the pulse signals, so as the alternated signal exhibits a series of signal sections, each signal section having a pred
Abstract: A method for conducting fast Brillouin optical time domain analysis for dynamic sensing of optical fibers is provided herein The method includes the following stages: injecting a pump pulse signal into a first end of an optical fiber and a probe signal into a second end of the optical fiber, wherein the probe and the pump pulse signals exhibit a frequency difference between them that is appropriate for an occurrence of a Brillouin effect; alternating the frequency of either the probe or the pulse signals, so as the alternated signal exhibits a series of signal sections, each signal section having a predefined common duration and a different frequency; measuring the Brillouin probe gain for each one of the alternating frequencies; and extracting physical properties of the optical fiber throughout its length at sample points associated with the sampled time and the frequencies, based on the measured Brillouin probe gain

168 citations


Journal ArticleDOI
TL;DR: A green approach for the synthesis of silver nanoparticles (Ag NPs) by using locust bean gum (LBG) polysaccharide and its application to detect hydrogen peroxide (H2O2) was reported in this paper.
Abstract: Green synthesis of nanoparticles and their applications in sensing area is of great interest to the research community. Herein we report a green approach for the synthesis of silver nanoparticles (Ag NPs) by using locust bean gum (LBG) polysaccharide and its application to detect hydrogen peroxide (H2O2). Ag NPs were synthesized by mixing optimized weight percent of LBG with a known quantity of silver nitrate (AgNO3) at 55–60 °C. Synthesized Ag NPs were characterized by UV–vis spectroscopy and atomic force microscopy (AFM). The size of synthesized Ag NPs was in the range of 18–51 nm depending upon the concentration of LBG and AgNO3. Further, a low cost and portable optical fiber based sensor using LBG stabilized Ag NPs was developed for monitoring the H2O2 concentration as low as 0.01 mM.

161 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an experimental and theoretical description of a high-visibility phase-sensitive optical time domain reflectometry (φOTDR) and its performance when used for ultrasonic vibration measurements.
Abstract: Phase-sensitive optical time domain reflectometry (φOTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. Up to now, φOTDRs have been used mostly for the measurement of sub-kHz vibrations, normally in the context of intrusion sensing. In this paper, the authors present an experimental and theoretical description of a high-visibility φOTDR and its performance when used for ultrasonic vibration measurements. The use of a semiconductor optical amplifier in the setup allows to suppress coherent noise and also to improve the spectral response of the pump pulses. These two advantages greatly decrease the detected intra-band noise thus allowing frequency measurements in the limits set by the time of flight of the light pulses while maintaining the simplicity of the scheme, as no post-processing, extremely high coherence lasers or coherent detection methods are required. The sensor was able to measure vibrations of up to 39.5 kHz with a resolution of 5 m over a range which could go up to 1.25 km. This is the first time to our knowledge that a fully distributed measurement of ultrasonic waves was achieved. The statistical behavior of the system was also described theoretically and characterized experimentally.

Journal ArticleDOI
TL;DR: It is demonstrated that this depletion effect can be precisely modelled and strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber.
Abstract: Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors It is demonstrated that this depletion effect can be precisely modelled This has been validated by experimental tests in an excellent quantitative agreement Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber

Journal ArticleDOI
TL;DR: A distributed optical fiber sensing system merged Mach-Zehnder interferometer and phase sensitive optical time domain reflectometer system for vibration measurement with high-frequency response and high spatial resolution is demonstrated, where modulated pulses are proposed to be used as sensing source.
Abstract: A distributed optical fiber sensing system merged Mach-Zehnder interferometer and phase sensitive optical time domain reflectometer (φ-OTDR) system for vibration measurement with high-frequency response and high spatial resolution is demonstrated, where modulated pulses are proposed to be used as sensing source. Frequency response and location information are obtained by Mach-Zehnder interferometer and φ-OTDR technology, respectively. In order to simulate high-frequency vibration of crack of cable and civil structure, experiments on detection of piezoelectric transducer and pencil-break are carried out. Spatial resolution of 5 m and the maximum frequency response of ~3 MHz are achieved in 1064 m fiber link when the narrow pulse width is 50 ns.

Patent
20 Jun 2013
TL;DR: In this paper, a fiber optic shape sensing device is inserted into a lumen and an instrument is guided to the locations of branches indicated on a rendering of the lumen to visualize branches.
Abstract: A method for visualizing branches of a lumen includes inserting (402) a fiber optic shape sensing device into a lumen and determining (404)changes in the lumen based upon strain induced in the fiber optic shape sensing device by flow in the lumen. Locations of branches are indicated (410) on a rendering of the lumen. An instrument is guided (414) to the locations of branches indicated on the rendering.


Journal ArticleDOI
TL;DR: In this paper, the authors focus on Rayleigh-based distributed optical fiber sensors, which are based on the scattering processes that originate from the interaction between light and matter, and provide unprecedented features, such as the ability of monitoring varia- tions of the observed physical field with spatial continuity along the fiber.
Abstract: Optical fiber sensors offer unprecedented features, the most unique of which is the ability of monitoring varia- tions of the observed physical field with spatial continuity along the fiber. These distributed optical fiber sensors are based on the scattering processes that originate from the interaction between light and matter. Among the three different scatter- ing processes that may take place in a fiber—namely Rayleigh, Raman and Brillouin scattering, this paper focuses on Rayleigh-based distributed optical fiber sensors. For a given optical frequency, Rayleigh-based sensors exploit the three main properties of light: intensity, phase and polarization. All these sensing mechanisms are reviewed, along with basic principles, main acquisition techniques and fields of application. Emphasis, however, will be put on polarization-based distributed optical fiber sensors. While they currently represent a niche, they offer promising unique features worth being considered in greater detail.

Journal ArticleDOI
TL;DR: A fiber-optic Fabry-Perot interferometric pressure sensor with its external diaphragm surface thinned and roughened by a femtosecond laser, which makes the sensor immune to variations in the ambient refractive index.
Abstract: In this Letter, we report on a fiber-optic Fabry-Perot interferometric pressure sensor with its external diaphragm surface thinned and roughened by a femtosecond laser. The laser-roughened surface helps to eliminate outer reflections from the external diaphragm surface and makes the sensor immune to variations in the ambient refractive index. The sensor is demonstrated to measure pressure in a high-temperature environment with low-temperature dependence.

Journal ArticleDOI
TL;DR: The fabricated FO LSPR sensor can be used for real-time label-free immunoassay having fast detection time, high resolution and sensitivity, and potential application to in-vivo detection systems.

Journal ArticleDOI
TL;DR: In this article, two types of localized surface plasmon resonance (LSPR)-based optical fiber biosensors using gold nanospheres (GNSs) and gold nanorods (GNRs) have been developed and their performance characteristics evaluated and crosscompared successfully in this work.
Abstract: Two types of localized surface plasmon resonance (LSPR)-based optical fiber biosensors using gold nanospheres (GNSs) and gold nanorods (GNRs) have been developed and their performance characteristics evaluated and cross-compared successfully in this work. Based on the results obtained from the optimization of each of these types of biosensor and reported by the authors elsewhere, GNSs with a diameter of 60 nm and GNRs with an aspect ratio of 4.1 were specifically chosen in this work for the fabrication of two representative sensor probes, with an aim to create a highly sensitive and wavelength-based LSPR sensor to overcome the limitations arising from other intensity-based sensors. In order to develop effective LSPR biosensors, both GNSs and GRNs respectively were immobilized on an unclad surface of an optical fiber, prior to the functionalization with human IgG in order to create a device for the detection of anti-human IgG, at different concentrations. The experimental results obtained from tests carried out show that the sensitivities of GNSs and GNRs-based LSPR sensors to refractive index variation are 914 and 601 nm/RIU respectively; however as biosensors they have demonstrated the same detection limit of 1.6 nM for the detection of anti-human IgG.

Journal ArticleDOI
TL;DR: The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing and is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.
Abstract: We report for the first time on the experimental response of a Surface Plasmon Resonance fiber optic sensor based on wavelength modulation for hydrogen sensing. This approach of measuring the hydrogen concentration makes the sensor insensitive to intensity fluctuations. The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing. The sensor consists of a multilayer of 35 nm Au / 180 nm SiO2/ Pd deposited on a step- index multimode fiber core. The sensitivity and selectivity of the sensor are optimal at a Pd thickness of 3.75 nm. The sensor is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.

Journal ArticleDOI
TL;DR: In this paper, a surface plasmon resonance (SPR) based fiber optic sensor coated with graphene is introduced, where a graphene film synthesized by thermal chemical vapor deposition (TCVD) is transferred onto the sensing area of the optical fiber.
Abstract: In this study, a surface plasmon resonance (SPR) based fiber optic sensor coated with graphene is introduced. A graphene film synthesized by thermal chemical vapor deposition (TCVD) is transferred onto the sensing area of the optical fiber. The detection mechanism of this sensor is based on the principle that the SPR signal changes according to the refractive indices of analytes. Biotinylated Double Crossover DNA (DXB) lattice and protein Streptavidin (SA) were used for the evaluation. To the best of our knowledge, this is the first attempt to use graphene as a replacement for conventional metal films. The exact SPR phenomena and the red-shift of 7.276 nm for the DXB and SA combination were observed.

Journal ArticleDOI
Bing-Hong Liu1, Yong-Xiang Jiang1, Xiaosong Zhu1, Xiaoli Tang1, Yi-Wei Shi1 
TL;DR: The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors, and factors that might affect sensitivity and detection accuracy are discussed.
Abstract: A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.

Journal ArticleDOI
TL;DR: A photonic crystal fiber (PCF) long-period grating (LPG) humidity sensor has been developed with high sensitivity and selectivity for nondestructive detection of moisture ingression into structures that can potentially lead to corrosion as mentioned in this paper.
Abstract: A photonic crystal fiber (PCF) long-period grating (LPG) humidity sensor has been developed with high sensitivity and selectivity for nondestructive detection of moisture ingression into structures that can potentially lead to corrosion. We have proposed two types of nanofilms to be coated on the surface of air channels in the grating region by electrostatic self-assembly deposition processing. The primary nanofilm does not affect LPG properties such as resonance wavelength or transmission intensity which can impact sensing characteristics; however it increases the sensitivity by changing the refractive index of the surrounding material. The secondary nanofilm is used for selectively adsorbing analyte molecules of interest. The experimental results reveal that, compared to the conventional fiber LPGs and exterior nanofilm-coated PCF-LPG, the interior nanofilm-coated PCF-LPG humidity sensors have both the most sensitive resonance intensity change of 0.00022%/10 −3 dBm from relative humidity (RH) of 38% to 39% and average wavelength shift of 0.0007%/pm for a relative humidity variation from 22% to 29%. The proposed sensor shows excellent thermal stability as well.

Journal ArticleDOI
TL;DR: Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters.
Abstract: Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

Journal ArticleDOI
TL;DR: This paper describes the implementation of a coherent beacon source placed at the distal tip of the multimode fiber, which can be used to compensate for the effects of bending and demonstrates focusing even when the fiber is bent by dynamically compensating for it.
Abstract: Multimode fiber endoscopes have recently been shown to provide sub-micrometer resolution, however, imaging through a multimode fiber is highly sensitive to bending. Here we describe the implementation of a coherent beacon source placed at the distal tip of the multimode fiber, which can be used to compensate for the effects of bending. In the first part of this paper, we show that a diffraction limited focused spot can be generated at the distal tip of the multimode fiber using the beacon. In the second part, we demonstrate focusing even when the fiber is bent by dynamically compensating for it. The speckle pattern at the proximal fiber end, generated by the beacon source placed at its distal end, is highly dependent on the fiber conformation. We experimentally show that by intensity correlation, it is possible to identify the fiber conformation and maintain a focus spot while the fiber is bent over a certain range. Once the fiber configuration is determined, previously calibrated phase patterns could be stored for each fiber conformation and used to scan the distal spot and perform imaging.

Journal ArticleDOI
26 Sep 2013-Sensors
TL;DR: A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation, and Experimental results are successfully compared with bend loss calculations.
Abstract: The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of . The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.

Journal ArticleDOI
TL;DR: In this article, a deformation shape-sensing methodology is investigated for the purposes of real-time condition assessment, control, and health monitoring of flexible lightweight aerospace structures, and the estimation results from both methods are also compared to reference displacements from photogrammetry and computational analyses.
Abstract: A new deformation shape-sensing methodology is investigated for the purposes of real-time condition assessment, control, and health monitoring of flexible lightweight aerospace structures. The fiber optic strain sensing technology was recently proposed by the NASA Dryden Flight Research Center. The methodology implements the use of fiber optic sensors to obtain strain measurements from the target structure and to estimate the corresponding displacement field. In this paper, the methodology is investigated through an experimental aluminum winglike swept-plate model. The proposed algorithm is implemented for three distinct loading cases and compared to a well-established modal-based shape-estimation algorithm. The estimation results from both methods are also compared to reference displacements from photogrammetry and computational analyses. The estimation error for each method is quantified using the root-mean-square measure, and the range of validity of the approach for damage detection is established. Fu...

Journal ArticleDOI
TL;DR: In this article, a model for the analysis of strain transfer mechanism in Brillouin-based sensors with strain singularities is provided for accurate detection of cracks and their locations in sensing with fiber optic distributed sensors, and the results indicate that the discontinuities in the strain distribution based on the theoretical analysis provide the means to accurately pinpoint the location of simulated cracks.
Abstract: Development of a model for the analysis of strain transfer mechanism in Brillouin-based sensors with strain singularities is provided in this study. The main objective of the research pertained to the development of a method for accurate detection of cracks and their locations in sensing with Brillouin-based fiber optic distributed sensors. The work involved formulation of a shear lag–based model considering the elastic as well as elastoplastic stages of the fiber optic coating strains. Feasibility of the proposed approach is evaluated through an experimental program. The experimental program involved use of a Brillouin optical time domain reflectometer (BOTDR) for distributed measurement of strain and detection of simulated cracks in a 15-m-long beam. The results indicate that the discontinuities in the strain distribution based on the theoretical analysis provide the means to accurately pinpoint the location of simulated cracks. On the other hand, the distortion effect of the BOTDR system due to...

Journal ArticleDOI
Zhigang Zang1
TL;DR: It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG, which means that the threshold switching power of this configuration can be greatly reduced by shifting such narrow transmission spectrum.
Abstract: A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

Journal ArticleDOI
TL;DR: It was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber.
Abstract: An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber. Second, the measurement accuracy issue in obtaining a precise pulse-width value by use of an autocorrelator together with a silica fiber-based 2 μm-band amplifier was investigated. It showed that the higher-order soliton compression effect caused by the combination of anomalous dispersion and Kerr nonlinearity can provide incorrect pulse-width information. Third, an experimental investigation into the precise role of the graphene oxide-deposited side-polished fiber was carried out to determine whether its polarization-dependent loss (PDL) can be a substantial contributor to mode-locking through nonlinear polarization rotation. By comparing its performance with that of a gold-deposited side-polished fiber, the PDL contribution to mode-locking was found to be insignificant, and the dominant mode-locking mechanism was shown to be saturable absorption due to mutual interaction between the evanescent field of the oscillated beam and the deposited graphene oxide particles.