scispace - formally typeset
Topic

Field effect

About: Field effect is a(n) research topic. Over the lifetime, 4018 publication(s) have been published within this topic receiving 92613 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Comparison of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
Abstract: Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2−200 cm2/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.

2,191 citations

Journal ArticleDOI

[...]

10 Mar 2005-Nature
TL;DR: It is demonstrated that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers, revealing that electrons are considerably more mobile in these materials than previously thought.
Abstract: Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes1: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity2,3,4 or low-bandgap5 organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10-3 to 10-2 cm2 V-1 s-1 have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor–dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.

2,115 citations

Book

[...]

18 Mar 1982
TL;DR: In this article, the authors present a method for extracting interface trap properties from the conductance of a metal oxide Silicon Capacitor at intermediate and high frequency intervals, and demonstrate that these properties can be used for charge trapping in the oxide.
Abstract: Introduction. Field Effect. Metal Oxide Silicon Capacitor at Low Frequencies. Metal Oxide Silicon Capacitor at Intermediate and High Frequencies. Extraction of Interface Trap Properties from the Conductance. Interfacial Nonuniformities. Experimental Evidence for Interface Trap Properties. Extraction of Interface Trap Properties from the Capacitance. Measurement of Silicon Properties. Charges, Barrier Heights, and Flatband Voltage. Charge Trapping in the Oxide. Instrumentation for Measuring Capacitor Characteristics. Oxidation of Silicon--Oxidation Kinetics. Oxidation of Silicon--Technology. Control of Oxide Charges. Models of the Interface. Appendices. Subject Index. Symbol Index.

2,101 citations

[...]

01 Jan 1982
TL;DR: In this article, the authors present a method for extracting interface trap properties from the conductance of a metal oxide Silicon Capacitor at intermediate and high frequency intervals, and demonstrate that these properties can be used for charge trapping in the oxide.
Abstract: Introduction. Field Effect. Metal Oxide Silicon Capacitor at Low Frequencies. Metal Oxide Silicon Capacitor at Intermediate and High Frequencies. Extraction of Interface Trap Properties from the Conductance. Interfacial Nonuniformities. Experimental Evidence for Interface Trap Properties. Extraction of Interface Trap Properties from the Capacitance. Measurement of Silicon Properties. Charges, Barrier Heights, and Flatband Voltage. Charge Trapping in the Oxide. Instrumentation for Measuring Capacitor Characteristics. Oxidation of Silicon--Oxidation Kinetics. Oxidation of Silicon--Technology. Control of Oxide Charges. Models of the Interface. Appendices. Subject Index. Symbol Index.

1,855 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration.
Abstract: Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

1,077 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
94% related
Band gap
86.8K papers, 2.2M citations
94% related
Silicon
196K papers, 3M citations
94% related
Amorphous solid
117K papers, 2.2M citations
90% related
Dielectric
169.7K papers, 2.7M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202171
202078
2019103
2018133
2017118