scispace - formally typeset
Search or ask a question
Topic

Field electron emission

About: Field electron emission is a research topic. Over the lifetime, 16909 publications have been published within this topic receiving 298243 citations. The topic is also known as: field emission.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors derived voltage-current characteristics for field and T-F emission in the forward and reverse regime of Schottky barriers formed on highly doped semiconductors.
Abstract: Field emission and thermionic-field (T-F) emission are considered as the phenomena responsible for the excess currents observed both in the forward and reverse directions of Schottky barriers formed on highly doped semiconductors. Voltage-current characteristics are derived for field and thermionic-field emission in the forward and reverse regime. The temperatures and voltages where these phenomena are predominent for a given diode are discussed. Comparison with experimental results on GaAs and Si diodes shows good agreement between theory and experiments.

1,268 citations

Journal ArticleDOI
TL;DR: In this paper, a general expression for the emitted current as a function of field, temperature, and work function is set up in the form of a definite integral, and each type of emission is associated with a technique for approximating the integral and with a characteristic dependence on the three parameters.
Abstract: Although the theories of thermionic and field emission of electrons from metals are very well understood, the two types of emission have usually been studied separately by first specifying the range of temperature and field and then constructing the appropriate expression for the current. In this paper the emission is treated from a unified point of view in order to establish the ranges of temperature and field for the two types of emission and to investigate the current in the region intermediate between thermionic and field emission. A general expression for the emitted current as a function of field, temperature, and work function is set up in the form of a definite integral. Each type of emission is then associated with a technique for approximating the integral and with a characteristic dependence on the three parameters. An approximation for low fields and high temperatures leads to an extension of the Richardson-Schottky formula for thermionic emission. The values of temperature and field for which it applies are established by considering the validity of the approximation. An analogous treatment of the integral, for high fields and low temperatures, gives an extension of the Fowler-Nordheim formula for field emission, and establishes the region of temperature and field in which it applies. Also another approximate method for evaluating the integral is given which leads to a new type of dependence of the emitted current on temperature and field and which applies in a narrow region of temperature and field intermediate between the field and thermionic emission regions.

1,242 citations

Journal ArticleDOI
TL;DR: In this paper, a field electron emission from vertically well-aligned zinc oxide (ZnO) nanowires, which were grown by the vapor deposition method at a low temperature of 550 °C, was investigated.
Abstract: Field electron emission from vertically well-aligned zinc oxide (ZnO) nanowires, which were grown by the vapor deposition method at a low temperature of 550 °C, was investigated. The high-purity ZnO nanowires showed a single crystalline wurtzite structure. The turn-on voltage for the ZnO nanowires was found to be about 6.0 V/μm at current density of 0.1 μA/cm2. The emission current density from the ZnO nanowires reached 1 mA/cm2 at a bias field of 11.0 V/μm, which could give sufficient brightness as a field emitter in a flat panel display. Therefore, the well-aligned ZnO nanowires grown at such low temperature can promise the application of a glass-sealed flat panel display in a near future.

1,063 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the field emission properties of carbon nanotube (CNT) films by a scanning anode FE apparatus, revealing a strong dependence on the density and morphology of the CNT deposit.
Abstract: The investigation of the field emission (FE) properties of carbon nanotube (CNT) films by a scanning anode FE apparatus, reveals a strong dependence on the density and morphology of the CNT deposit. Large differences between the microscopic and macroscopic current and emission site densities are observed, and explained in terms of a variation of the field enhancement factor β. As a consequence, the emitted current density can be optimized by tuning the density of CNTs. Films with medium densities (on the order of 107 emitters/cm2, according to electrostatic calculations) show the highest emitted current densities.

945 citations

Journal ArticleDOI

905 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
92% related
Band gap
86.8K papers, 2.2M citations
90% related
Amorphous solid
117K papers, 2.2M citations
88% related
Carbon nanotube
109K papers, 3.6M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022262
2021251
2020314
2019337
2018427