scispace - formally typeset
Search or ask a question
Topic

Field line

About: Field line is a research topic. Over the lifetime, 6973 publications have been published within this topic receiving 234617 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the spontaneous generation of reversed fields in toroidal plasmas is shown to be a consequence of relaxation under constraints, and the onset of the reversed field and other features of this model agree well with observations on ZETA.
Abstract: The spontaneous generation of reversed fields in toroidal plasmas is shown to be a consequence of relaxation under constraints. With perfect conductivity a topological constraint exists for each field line and the final state is not unique. With small departures from perfect conductivity, topological constraints are relaxed and the final state becomes unique. The onset of the reversed field and other features of this model agree well with observations on ZETA.

1,740 citations

Journal ArticleDOI
TL;DR: In this article, an improved quantitative representation of the magnetic field in the geomagnetosphere is developed, taking into account the effect of warping the tail current sheet in two dimensions due to the geodipole tilt, as well as spatial variations of the current sheet thickness along the Sun-Earth and dawn-dusk directions.

1,595 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects is proposed.
Abstract: We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.

1,310 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the circumstances under which finite disturbance amplitude solutions of the coupled wave equation can be obtained in the vicinity of the resonant field line, and the relevance of recent experimental work to the problem was pointed out.

1,134 citations

Journal ArticleDOI
01 Oct 1994-Nature
TL;DR: In this paper, the authors identify the reconnection region as the site of particle acceleration, suggesting that the basic physics of the magnetic reconnection process may be common to both types of flares.
Abstract: SOLAR flares are thought to be the result of magnetic reconnection — the merging of antiparallel magnetic fields and the consequent release of magnetic energy. Flares are classified into two types1: compact and two-ribbon. The two-ribbon flares, which appear as slowly-developing, long-lived large loops, are understood theoretically2–6 as arising from an eruption of a solar prominence that pulls magnetic field lines upward into the corona. As the field lines form an inverted Y-shaped structure and relax, the reconnection of the field lines takes place. This view has been supported by recent observations7–10. A different mechanism seemed to be required, however, to produce the short-lived, impulsive compact flares. Here we report observations made with the Yohkoh11 Hard X-ray Telescope12 and Soft X-ray Telescope13, which show a compact flare with a geometry similar to that of a two-ribbon flare. We identify the reconnection region as the site of particle acceleration, suggesting that the basic physics of the reconnection process (which remains uncertain) may be common to both types of flare.

1,121 citations


Network Information
Related Topics (5)
Magnetic field
167.5K papers, 2.3M citations
83% related
Plasma
89.6K papers, 1.3M citations
83% related
Radiative transfer
43.2K papers, 1.1M citations
82% related
Turbulence
112.1K papers, 2.7M citations
78% related
Electric field
87.1K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202297
202189
202099
2019140
2018128