Struggling to understand research papers? Don’t panic! Get simple explanations to your questions. Learn more

scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt


Field (physics)

About: Field (physics) is a(n) research topic. Over the lifetime, 95084 publication(s) have been published within this topic receiving 1535219 citation(s). The topic is also known as: physical field.
More filters

01 Jan 1873
Abstract: Arguably the most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831–1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field. A fellow of Trinity College Cambridge, Maxwell became, in 1871, the first Cavendish Professor of Physics at Cambridge. His famous equations - a set of four partial differential equations that relate the electric and magnetic fields to their sources, charge density and current density - first appeared in fully developed form in his 1873 Treatise on Electricity and Magnetism. This two-volume textbook brought together all the experimental and theoretical advances in the field of electricity and magnetism known at the time, and provided a methodical and graduated introduction to electromagnetic theory. Volume 2 covers magnetism and electromagnetism, including the electromagnetic theory of light, the theory of magnetic action on light, and the electric theory of magnetism.

9,273 citations

Journal ArticleDOI
Abstract: A derivation is given of the effect of a time‐dependent magnetic field gradient on the spin‐echo experiment, particularly in the presence of spin diffusion. There are several reasons for preferring certain kinds of time‐dependent magnetic field gradients to the more usual steady gradient. If the gradient is reduced during the rf pulses, H1 need not be particularly large; if the gradient is small at the time of the echo, the echo will be broad and its amplitude easy to measure. Both of these relaxations of restrictions on the measurement of diffusion coefficients by the spin‐echo technique serve to extend its range of applicability. Furthermore, a pulsed gradient can be recommended when it is critical to define the precise time period over which diffusion is being measured.The theoretical expression derived has been verified experimentally for several choices of time dependent magnetic field gradient. An apparatus is described suitable for the production of pulsed gradients with amplitudes as large as 100 ...

7,409 citations

01 Jan 1985
TL;DR: This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry.
Abstract: From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry...The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two."

6,443 citations

Journal ArticleDOI
Abstract: The response of an interacting many-particle system to a time-dependent external field can usually be treated within linear response theory. Due to rapid experimental progress in the field of laser physics, however, ultra-short laser pulses of very high intensity have become available in recent years. The electric field produced in such pulses can reach the strength of the electric field caused by atomic nuclei. If an atomic system is placed in the focus of such a laser pulse one observes a wealth of new phenomena [1] which cannot be explained by traditional perturbation theory. The non-perturbative quantum mechanical description of interacting particles moving in a very strong time-dependent external field therefore has become a prominent problem of theoretical physics. In principle, it requires a full solution of the time-dependent Schrodinger equation for the interacting many-body system, which is an exceedingly difficult task. In view of the success of density functional methods in the treatment of stationary many-body systems and in view of their numerical simplicity, a time-dependent version of density functional theory appears highly desirable, both within and beyond the regime of linear response.

6,210 citations

Network Information
Related Topics (5)
Hamiltonian (quantum mechanics)

48.6K papers, 1M citations

82% related

60K papers, 1.2M citations

82% related
Gauge theory

38.7K papers, 1.2M citations

81% related
Magnetic field

167.5K papers, 2.3M citations

81% related

152.3K papers, 3M citations

81% related
No. of papers in the topic in previous years