scispace - formally typeset
Search or ask a question
Topic

Filamentation

About: Filamentation is a research topic. Over the lifetime, 3169 publications have been published within this topic receiving 57987 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.

2,282 citations

Journal ArticleDOI
10 Apr 2009-Science
TL;DR: The experimental observation of curved plasma channels generated in air using femtosecond Airy beams, where the tightly confined main intensity feature of the axially nonsymmetric laser beam propagates along a bent trajectory, leaving a curved plasma channel behind.
Abstract: Plasma channel generation (or filamentation) using ultraintense laser pulses in dielectric media has a wide spectrum of applications, ranging from remote sensing to terahertz generation to lightning control. So far, laser filamentation has been triggered with the use of ultrafast pulses with axially symmetric spatial beam profiles, thereby generating straight filaments. We report the experimental observation of curved plasma channels generated in air using femtosecond Airy beams. In this unusual propagation regime, the tightly confined main intensity feature of the axially nonsymmetric laser beam propagates along a bent trajectory, leaving a curved plasma channel behind. Secondary channels bifurcate from the primary bent channel at several locations along the beam path. The broadband radiation emanating from different longitudinal sections of the curved filament propagates along angularly resolved trajectories.

746 citations

Journal ArticleDOI
TL;DR: In this article, a carrier-envelope offset (CEO) phase locked few-cycle pulses are generated using self-guiding of intense 43-fs, 0.84 mJ optical pulses during propagation in a transparent noble gas.
Abstract: Intense, well-controlled light pulses with only a few optical cycles start to play a crucial role in many fields of physics, such as attosecond science. We present an extremely simple and robust technique to generate such carrier-envelope offset (CEO) phase locked few-cycle pulses, relying on self-guiding of intense 43-fs, 0.84 mJ optical pulses during propagation in a transparent noble gas. We have demonstrated 5.7-fs, 0.38 mJ pulses with an excellent spatial beam profile and discuss the potential for much shorter pulses. Numerical simulations confirm that filamentation is the mechanism responsible for pulse shortening. The method is widely applicable and much less sensitive to experimental conditions such as beam alignment, input pulse duration or gas pressure as compared to gas-filled hollow fibers.

564 citations

Journal ArticleDOI
TL;DR: Bacteria have evolved complex systems to maintain consistent cell morphologies, but in certain circumstances, bacteria alter this highly regulated process to transform into filamentous organisms.
Abstract: Bacteria have evolved complex systems to maintain consistent cell morphologies. Nevertheless, in certain circumstances, bacteria alter this highly regulated process to transform into filamentous organisms. Accumulating evidence attributes important biological roles to filamentation in stressful environments, including, but not limited to, sites of interaction between pathogenic bacteria and their hosts. Filamentation could represent an intended response to specific environmental cues that promote survival amidst the threats of consumption and killing.

510 citations

Journal ArticleDOI
TL;DR: A strong forward directed THz emission from femtosecond laser filaments in air is attributed to a transition-Cherenkov emission from the plasma space charge moving behind the ionization front at light velocity.
Abstract: We attribute a strong forward directed THz emission from femtosecond laser filaments in air to a transition-Cherenkov emission from the plasma space charge moving behind the ionization front at light velocity. Distant targets can be easily irradiated by this new source of THz radiation.

424 citations


Network Information
Related Topics (5)
Electric field
87.1K papers, 1.4M citations
82% related
Laser
353.1K papers, 4.3M citations
81% related
Electron
111.1K papers, 2.1M citations
80% related
Magnetic field
167.5K papers, 2.3M citations
78% related
Excited state
102.2K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022218
2021104
2020111
2019154
2018128