scispace - formally typeset
Search or ask a question
Topic

Filler metal

About: Filler metal is a research topic. Over the lifetime, 11152 publications have been published within this topic receiving 86590 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy has been revealed, where four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed currents GTAW, (iii) continuous currents GMAW (CGMAW), and (iv) pulses current GMAWS (PCGMAWS) processes.
Abstract: This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of welding conditions on the weld bead geometry and welding defects was studied, and it was shown that lack of fusion could be prevented by optimizing the relationship between laser power intensity and the deposited metal volume.
Abstract: Thick-section stainless steels are widely used in the components and structures for nuclear power plants. Laser welding is being considered as a high-efficiency method instead of arc welding for some components, so as to improve the production efficiency and reduce the residual stresses of the heat-affected zone. In this paper, multipasses narrow-gap welding of 50 mm thick Type 316L plates with an 8 kW disk laser was first investigated. The effect of welding conditions on the weld bead geometry and welding defects was studied. It shows that lack of fusion could be prevented by optimizing the relationship between laser power intensity and the deposited metal volume. Butt joint of 50 mm thick plates with narrow gap could be performed with eight-layers welding at laser power of 6 kW and welding speed of 0.4 m/min. In order to reduce the weld passes further, gas jet assisted laser welding was tried to weld thick Type 316L plates with a 10 kW fiber laser. The result shows that butt-joint welding of 40 mm plates without filler wire could be carried out at 0.3 m/min welding speed with no porosity or other welding defects. As for 50 mm thick plate, a good weld bead could be obtained with bead-on-plate welding from both sides at 0.2 m/min welding speed.

73 citations

Journal ArticleDOI
TL;DR: In this paper, an external axial magnetic field (EMF) hybrid CMT welding-brazing process was adopted to join pure titanium TA2 and aluminum alloy 6061-T6.

73 citations

Journal ArticleDOI
TL;DR: In this article, the macro and microstructure, heat history of the interlayer under different parameters and the weld properties have been investigated, and the experimental observations showed that the thickness of interlayer decreased with the increasing of rotating speed and the decreasing of traverse speed, but the rotating speed played a more important role in the process.

73 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of shielding arrangement is experimented for joining commercially pure titanium sheets with variations in the gas tungsten arc welding (GTAW) process parameters namely the welding current and travel speed.
Abstract: Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

73 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
91% related
Microstructure
148.6K papers, 2.2M citations
83% related
Alloy
171.8K papers, 1.7M citations
83% related
Deformation (engineering)
41.5K papers, 899.7K citations
79% related
Machining
121.3K papers, 1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202379
2022127
2021178
2020291
2019329
2018320