scispace - formally typeset
Search or ask a question
Topic

Filter bank

About: Filter bank is a research topic. Over the lifetime, 10465 publications have been published within this topic receiving 189911 citations. The topic is also known as: filterbank.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers the sampling of temporal or spatial wide sense stationary (WSS) signals using a co-prime pair of sparse samplers and shows that the co-array based method for estimating sinusoids in noise offers many advantages over methods based on the use of Chinese remainder theorem and its extensions.
Abstract: This paper considers the sampling of temporal or spatial wide sense stationary (WSS) signals using a co-prime pair of sparse samplers. Several properties and applications of co-prime samplers are developed. First, for uniform spatial sampling with M and N sensors where M and N are co-prime with appropriate interelement spacings, the difference co-array has O(MN) freedoms which can be exploited in beamforming and in direction of arrival estimation. An M -point DFT filter bank and an N-point DFT filter bank can be used at the outputs of the two sensor arrays and their outputs combined in such a way that there are effectively MN bands (i.e., MN narrow beams with beamwidths proportional to 1/MN), a result following from co-primality. The ideas are applicable to both active and passive sensing, though the details and tradeoffs are different. Time domain sparse co-prime samplers also generate a time domain co-array with O(MN) freedoms, which can be used to estimate the autocorrelation at much finer lags than the sample spacings. This allows estimation of power spectrum of an arbitrary signal with a frequency resolution proportional to 2π/(MNT) even though the pairs of sampled sequences xc(NTn) and xc(MTn) in the time domain can be arbitrarily sparse - in fact from the sparse set of samples xc(NTn) and xc(MTn) one can estimate O(MN) frequencies in the range |ω| <; π/T. It will be shown that the co-array based method for estimating sinusoids in noise offers many advantages over methods based on the use of Chinese remainder theorem and its extensions. Examples are presented throughout to illustrate the various concepts.

1,247 citations

Journal ArticleDOI
01 Jan 1990
TL;DR: Several applications of the polyphase concept are described, including subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion, digital crossover networks, and multirate coding of narrowband filter coefficients.
Abstract: The basic concepts and building blocks in multirate digital signal processing (DSP), including the digital polyphase representation, are reviewed. Recent progress, as reported by several authors in this area, is discussed. Several applications are described, including subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrowband filter coefficients. The M-band quadrature mirror filter (QMF) bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, is examined in a pseudo-circulant-matrix framework. Unconventional applications of the polyphase concept are discussed. >

1,067 citations

Proceedings ArticleDOI
01 Jun 2008
TL;DR: A novel filter bank common spatial pattern (FBCSP) is proposed to perform autonomous selection of key temporal-spatial discriminative EEG characteristics and shows that FBCSP, using a particular combination feature selection and classification algorithm, yields relatively higher cross-validation accuracies compared to prevailing approaches.
Abstract: In motor imagery-based brain computer interfaces (BCI), discriminative patterns can be extracted from the electroencephalogram (EEG) using the common spatial pattern (CSP) algorithm. However, the performance of this spatial filter depends on the operational frequency band of the EEG. Thus, setting a broad frequency range, or manually selecting a subject-specific frequency range, are commonly used with the CSP algorithm. To address this problem, this paper proposes a novel filter bank common spatial pattern (FBCSP) to perform autonomous selection of key temporal-spatial discriminative EEG characteristics. After the EEG measurements have been bandpass-filtered into multiple frequency bands, CSP features are extracted from each of these bands. A feature selection algorithm is then used to automatically select discriminative pairs of frequency bands and corresponding CSP features. A classification algorithm is subsequently used to classify the CSP features. A study is conducted to assess the performance of a selection of feature selection and classification algorithms for use with the FBCSP. Extensive experimental results are presented on a publicly available dataset as well as data collected from healthy subjects and unilaterally paralyzed stroke patients. The results show that FBCSP, using a particular combination feature selection and classification algorithm, yields relatively higher cross-validation accuracies compared to prevailing approaches.

991 citations

Journal ArticleDOI
TL;DR: A directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information is introduced and it is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed.
Abstract: The authors introduce a directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information. The passband regions of the component filters are wedge-shaped and thus provide directional information. It is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed. The authors discuss the theory for directional decomposition and reconstruction. In addition, implementation issues are addressed where realizations based on both recursive and nonrecursive filters are considered. >

911 citations

Journal ArticleDOI
Jont B. Allen1
TL;DR: In this article, a theory of short term spectral analysis, synthesis, and modification is presented with an attempt at pointing out certain practical and theoretical questions, which are useful in designing filter banks when the filter bank outputs are to be used for synthesis after multiplicative modifications are made to the spectrum.
Abstract: A theory of short term spectral analysis, synthesis, and modification is presented with an attempt at pointing out certain practical and theoretical questions. The methods discussed here are useful in designing filter banks when the filter bank outputs are to be used for synthesis after multiplicative modifications are made to the spectrum.

899 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
88% related
Robustness (computer science)
94.7K papers, 1.6M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
85% related
Wireless
133.4K papers, 1.9M citations
83% related
Convolutional neural network
74.7K papers, 2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022188
2021174
2020239
2019289
2018309