scispace - formally typeset
Search or ask a question
Topic

Financial risk

About: Financial risk is a research topic. Over the lifetime, 11899 publications have been published within this topic receiving 231404 citations. The topic is also known as: economic risk.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors conduct an empirical assessment of theories concerning risk taking by banks, their ownership structures, and national bank regulations, and show that bank risk taking varies positively with the comparative power of shareholders within the corporate governance structure of each bank.

1,965 citations

Book
01 Jan 2002
TL;DR: In this article, the authors present an introduction to financial mathematics, focusing on stochastic models in discrete time, with a focus on the problem of pricing and hedging of financial derivatives.
Abstract: This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This third revised and extended edition now contains more than one hundred exercises. It also includes new material on risk measures and the related issue of model uncertainty, in particular a new chapter on dynamic risk measures and new sections on robust utility maximization and on efficient hedging with convex risk measures.

1,866 citations

Journal ArticleDOI
TL;DR: This paper found that single women exhibit relatively more risk aversion in financial decision-making than single men, and that the proportion of wealth held as risky assets is higher for single women than for single men.
Abstract: We find that single women exhibit relatively more risk aversion in financial decision making than single men. Using U.S. sample data, we examine household holdings of risky assets to determine whether there are gender differences in financial risk taking. As wealth increases, the proportion of wealth held as risky assets is estimated to increase by a smaller amount for single women than for single men. Gender differences in financial risk taking are also influenced by age, race, and number of children. Greater financial risk aversion may provide an explanation for women's lower levels of wealth compared with men's. (JEL J16, D81, G11)

1,674 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used Merton's option pricing model to compute default measures for individual firms and assess the effect of default risk on equity returns and found that default risk is systematic risk.
Abstract: This is the first study that uses Merton's (1974) option pricing model to compute default measures for individual firms and assess the effect of default risk on equity returns. The size effect is a default effect, and this is also largely true for the book-to-market (BM) effect. Both exist only in segments of the market with high default risk. Default risk is systematic risk. The Fama-French (FF) factors SMB and HML contain some default-related information, but this is not the main reason that the FF model can explain the cross-section of equity returns.

1,616 citations

Book
05 Dec 2000
TL;DR: In this article, the authors present a risk analysis approach based on Monte-Carlo simulation, which is used to fit a first-order parametric distribution to observed data and then combine it with a second-order probability distribution.
Abstract: Preface. Part 1: Introduction. 1. Why do a risk analysis? 1.1. Moving on from "What If" Scenarios. 1.2. The Risk Analysis Process. 1.3. Risk Management Options. 1.4. Evaluating Risk Management Options. 1.5. Inefficiencies in Transferring Risks to Others. 1.6. Risk Registers. 2. Planning a risk analysis. 2.1. Questions and Motives. 2.2. Determine the Assumptions that are Acceptable or Required. 2.3. Time and Timing. 2.4. You'll Need a Good Risk Analyst or Team. 3. The quality of a risk analysis. 3.1. The Reasons Why a Risk Analysis can be Terrible. 3.2. Communicating the Quality of Data Used in a Risk Analysis. 3.3. Level of Criticality. 3.4. The Biggest Uncertainty in a Risk Analysis. 3.5. Iterate. 4. Choice of model structure. 4.1. Software Tools and the Models they Build. 4.2. Calculation Methods. 4.3. Uncertainty and Variability. 4.4. How Monte Carlo Simulation Works. 4.5. Simulation Modelling. 5. Understanding and using the results of a risk analysis. 5.1. Writing a Risk Analysis Report. 5.2. Explaining a Model's Assumptions. 5.3. Graphical Presentation of a Model's Results. 5.4. Statistical Methods of Analysing Results. Part 2: Introduction. 6. Probability mathematics and simulation. 6.1. Probability Distribution Equations. 6.2. The Definition of "Probability". 6.3. Probability Rules. 6.4. Statistical Measures. 7. Building and running a model. 7.1. Model Design and Scope. 7.2. Building Models that are Easy to Check and Modify. 7.3. Building Models that are Efficient. 7.4. Most Common Modelling Errors. 8. Some basic random processes. 8.1. Introduction. 8.2. The Binomial Process. 8.3. The Poisson Process. 8.4. The Hypergeometric Process. 8.5. Central Limit Theorem. 8.6. Renewal Processes. 8.7. Mixture Distributions. 8.8. Martingales. 8.9. Miscellaneous Example. 9. Data and statistics. 9.1. Classical Statistics. 9.2. Bayesian Inference. 9.3. The Bootstrap. 9.4. Maximum Entropy Principle. 9.5. Which Technique Should You Use? 9.6. Adding uncertainty in Simple Linear Least-Squares Regression Analysis. 10. Fitting distributions to data. 10.1. Analysing the Properties of the Observed Data. 10.2. Fitting a Non-Parametric Distribution to the Observed Data. 10.3. Fitting a First-Order Parametric Distribution to Observed Data. 10.4. Fitting a Second-Order Parametric Distribution to Observed Data. 11. Sums of random variables. 11.1. The Basic Problem. 11.2. Aggregate Distributions. 12. Forecasting with uncertainty. 12.1. The Properties of a Time Series Forecast. 12.2. Common Financial Time Series Models. 12.3. Autoregressive Models. 12.4. Markov Chain Models. 12.5. Birth and Death Models. 12.6. Time Series Projection of Events Occurring Randomly in Time. 12.7. Time Series Models with Leading Indicators. 12.8. Comparing Forecasting Fits for Different Models. 12.9. Long-Term Forecasting. 13. Modelling correlation and dependencies. 13.1. Introduction. 13.2. Rank Order Correlation. 13.3. Copulas. 13.4. The Envelope Method. 13.5. Multiple Correlation Using a Look-Up Table. 14. Eliciting from expert opinion. 14.1. Introduction. 14.2. Sources of Error in Subjective Estimation. 14.3. Modelling Techniques. 14.4. Calibrating Subject Matter Experts. 14.5. Conducting a Brainstorming Session. 14.6. Conducting the Interview. 15. Testing and modelling causal relationships. 15.1. Campylobacter Example. 15.2. Types of Model to Analyse Data. 15.3. From Risk Factors to Causes. 15.4. Evaluating Evidence. 15.5. The Limits of Causal Arguments. 15.6. An Example of a Qualitative Causal Analysis. 15.7. Is Causal Analysis Essential? 16. Optimisation in risk analysis. 16.1. Introduction. 16.2. Optimisation Methods. 16.3. Risk Analysis Modelling and Optimisation. 16.4. Working Example: Optimal Allocation of Mineral Pots. 17. Checking and validating a model. 17.1. Spreadsheet Model Errors. 17.2. Checking Model Behaviour. 17.3. Comparing Predictions Against Reality. 18. Discounted cashflow modelling. 18.1. Useful Time Series Models of Sales and Market Size. 18.2. Summing Random Variables. 18.3. Summing Variable Margins on Variable Revenues. 18.4. Financial Measures in Risk Analysis. 19. Project risk analysis. 19.1. Cost Risk Analysis. 19.2. Schedule Risk Analysis. 19.3. Portfolios of risks. 19.4. Cascading Risks. 20. Insurance and finance risk analysis modelling. 20.1. Operational Risk Modelling. 20.2. Credit Risk. 20.3. Credit Ratings and Markov Chain Models. 20.4. Other Areas of Financial Risk. 20.5. Measures of Risk. 20.6. Term Life Insurance. 20.7. Accident Insurance. 20.8. Modelling a Correlated Insurance Portfolio. 20.9. Modelling Extremes. 20.10. Premium Calculations. 21. Microbial food safety risk assessment. 21.1. Growth and Attenuation Models. 21.2. Dose-Response Models. 21.3. Is Monte Carlo Simulation the Right Approach? 21.4. Some Model Simplifications. 22. Animal import risk assessment. 22.1. Testing for an Infected Animal. 22.2. Estimating True Prevalence in a Population. 22.3. Importing Problems. 22.4. Confidence of Detecting an Infected Group. 22.5. Miscellaneous Animal Health and Food Safety Problems. I. Guide for lecturers. II. About ModelRisk. III. A compendium of distributions. III.1. Discrete and Continuous Distributions. III.2. Bounded and Unbounded Distributions. III.3. Parametric and Non-Parametric Distributions. III.4. Univariate and Multivariate Distributions. III.5. Lists of Applications and the Most Useful Distributions. III.6. How to Read Probability Distribution Equations. III.7. The Distributions. III.8. Introduction to Creating Your Own Distributions. III.9. Approximation of One Distribution with Another. III.10. Recursive Formulae for Discrete Distributions. III.11. A Visual Observation On The Behaviour Of Distributions. IV. Further reading. V. Vose Consulting. References. Index.

1,606 citations


Network Information
Related Topics (5)
Empirical research
51.3K papers, 1.9M citations
85% related
Incentive
41.5K papers, 1M citations
83% related
Interest rate
47K papers, 1M citations
82% related
Earnings
39.1K papers, 1.4M citations
82% related
Competitive advantage
46.6K papers, 1.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022250
2021643
2020658
2019673
2018541