scispace - formally typeset
Search or ask a question

Showing papers on "Fish oil published in 1970"



Journal ArticleDOI
TL;DR: In this paper, performic acid hydroxylated alewife and menhaden oils were used to prepare urethane foams, which exhibited characteristic low compressive strengths at 10% deflection (6.4 to 9.5 psi), low density (1.45 to 1.65 pcf), high porosity (0.7-1.7% closed cells) and high water absorption compared to a conventional polyether urethANE foam.
Abstract: Alewife fish oil was hydroxylated by performic, peracetic and pertungstic acid methods. Products were compared with respect to yield, free acid, hydroxyl number, saponification value and peroxide value. Fish oils oxidized with performic acid resulted in high yields (83% to 95%), low acid values (0.12 to 0.19), high hydroxy (142 to 245) and saponification (247 to 271) numbers, and relatively low peroxide values (72 to 266). Performic acid hydroxylated alewife and menhaden oils were used to prepare urethane foams. These foams exhibited characteristic low compressive strengths at 10% deflection (6.4 to 9.5 psi), low density (1.45 to 1.65 pcf), high porosity (0.7 to 1.7% closed cells) and high water absorption compared to a conventional polyether urethane foam. Performic acid hydroxylated alewife oil was further refined, using cation and anion exchange resins, for use in the preparation of urethane elastomers. These polymers generally exhibited higher tensile and Graves tear strengths than a comparable castor oil elastomer used as a control. though dielectric strengths were similar for both fish oil and castor oil elastomers, tensile elongation at break point was greater for the castor oil elastomers. When the isocyanate index of the fish oil elastomers was increased from 105 to 156, the Graves tear strength exhibited the greatest change.

3 citations