scispace - formally typeset
Search or ask a question
Topic

Fish oil

About: Fish oil is a research topic. Over the lifetime, 9887 publications have been published within this topic receiving 367953 citations. The topic is also known as: fish oils & Fish oil.


Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that by modulating the eicosanoid metabolism using a combination of n-3 fatty acids and cyclooxygenase-2 inhibitor, some of the signs and symptoms associated with a SIMS could be ameliorated.
Abstract: Under the common denomination of Systemic Immune-Metabolic Syndrome (SIMS), we grouped many symptoms that share a similar pathophysiologic background. SIMS is the result of the dysfunctional interaction of tumor cells, stroma cells, and the immune system, leading to the release of cytokines and other systemic mediators such as eicosanoids. SIMS includes systemic syndromes such as paraneoplastic hemopathies, hypercalcemia, coagulopathies, fatigue, weakness, cachexia, chronic nausea, anorexia, and early satiety among others. Eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil can help in the management of persistent chronic inflammatory states, but treatment's compliance is generally poor. Preferentially, Cox-2 inhibition can create a favorable pattern of cytokines by decreasing the production of certain eicosanoids, although their role in SIMS is unknown. The aim of this study was to test the hypothesis that by modulating systemic inflammation through an eicosanoid-targeted approach, some of the symptoms of the SIMS could be controlled. We exclusively evaluated 12 patients for compliance. Patients were assigned 1 of the 4 treatment groups (15-, 12-, 9-, or 6-g dose, fractionated every 8 h). For patients assigned to 15 and 12 doses, the overall compliance was very poor and unsatisfactory for patients receiving the 9-g dose. The maximum tolerable dose was calculated to be around 2 capsules tid (6 g of fish oil per day). A second cohort of 22 patients with advanced lung cancer and SIMS were randomly assigned to receive either fish oil, 2 g tid, plus placebo capsules bid (n = 12) or fish oil, 2 g tid, plus celecoxib 200 mg bid (n = 10). All patients in both groups received oral food supplementation. After 6 wk of treatment, patients receiving fish oil + placebo or fish oil + celecoxib showed significantly more appetite, less fatigue, and lower C-reactive protein (C-RP) values than their respective baselines values (P < 0.02 for all the comparisons). Additionally, patients in the fish oil + celecoxib group also improved their body weight and muscle strength compared to baseline values (P < 0.02 for all the comparisons). Comparing both groups, patients receiving fish oil + celecoxib showed significantly lower C-RP levels (P = 0.005, t-test), higher muscle strength (P = 0.002, t-test) and body weight (P = 0.05, t-test) than patients receiving fish oil + placebo. The addition of celecoxib improved the control of the acute phase protein response, total body weight, and muscle strength. Additionally, the consistent nutritional support used in our patients could have helped to maximize the pharmacological effects of fish oil and/or celecoxib. This study shows that by modulating the eicosanoid metabolism using a combination of n-3 fatty acids and cyclooxygenase-2 inhibitor, some of the signs and symptoms associated with a SIMS could be ameliorated.

122 citations

Journal ArticleDOI
TL;DR: This review explores the technologies being applied to produce de novo n-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet.
Abstract: As the global population grows more of our fish and seafood are being farmed. Fish are the main dietary source of the omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, but these cannot be produced in sufficient quantities as are now required for human health. Farmed fish have traditionally been fed a diet consisting of fishmeal and fish oil, rich in n-3 LC-PUFA. However, the increase in global aquaculture production has resulted in these finite and limited marine ingredients being replaced with sustainable alternatives of terrestrial origin that are devoid of n-3 LC-PUFA. Consequently, the nutritional value of the final product has been partially compromised with EPA and DHA levels both falling. Recent calls from the salmon industry for new sources of n-3 LC-PUFA have received significant commercial interest. Thus, this review explores the technologies being applied to produce de novo n-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet.

121 citations

Journal ArticleDOI
TL;DR: In this paper, a deodorization of semi-refined fish oil at 180, 220 and 250°C was shown to produce polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA.
Abstract: Long-chain polyunsaturated fatty acids (LC-PUFA) of the n-3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene-interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non-volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi-refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products generated at high deodorization temperatures, with 19.5% oligomers being formed in oil deodorized at 250 °C. A significant amount of CFAM was produced during deodorization at temperatures above or equal to 220 °C. In fact, 23.9 and 66.3 mg/g of C20 and C22 CFAM were found in samples deodorized at 220 and 250 °C, respectively. Only minor changes were observed in the EPA and DHA trans isomer content and composition after deodorization at 180 °C. At this temperature, the formation of polar compounds and CFAM was also low. However, the oil deodorized at 220 and 250 °C contained 4.2% and 7.6% geometrical isomers, respectively. Even after a deodorization at 250 °C, the majority of geometrical isomers were mono- and di-trans. These results indicate that deodorization of fish oils should be conducted at a maximal temperature of 180 °C. This temperature seems to be lower than the activation energy required for polymerization (intra and inter) and geometrical isomerization.

121 citations

Journal ArticleDOI
TL;DR: Atlantic salmon grow well and with high efficiency on high energy, fish meal-based diets containing up to 100% supplementary soybean oil and no evidence of detrimental effects of the Soybean oil on the health of the fish was found.

121 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Adipose tissue
54.6K papers, 2.5M citations
79% related
Lipid peroxidation
42.4K papers, 1.8M citations
76% related
Ascorbic acid
93.5K papers, 2.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023259
2022552
2021308
2020347
2019326
2018360