scispace - formally typeset
Search or ask a question
Topic

Fish oil

About: Fish oil is a research topic. Over the lifetime, 9887 publications have been published within this topic receiving 367953 citations. The topic is also known as: fish oils & Fish oil.


Papers
More filters
Journal ArticleDOI
TL;DR: Data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.
Abstract: The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d(-1) of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.

99 citations

Journal ArticleDOI
TL;DR: KO, containing bioactive n-3 PUFAs in the form of phospholipids, was capable of modulating lipid metabolism by lowering plasma levels of TAG and cholesterol and stimulating the mitochondrial and peroxisomal fatty acid β-oxidation, as well as improving the overall carnitine turnover.
Abstract: Purpose Biological effects of marine oils, fish oil (FO) and krill oil (KO), are mostly attributed to the high content of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The study was aimed to investigate the influence of FO and KO on lipid homeostasis and inflammation in an animal model of persistent low-grade exposure to human tumor necrosis factor α (hTNF-α) and to evaluate whether these effects depend on the structural forms of EPA and DHA [triacylglycerols (TAG) vs. phospholipids].

99 citations

Book ChapterDOI
01 Jan 2008
TL;DR: Simultaneous reductions in FM and FO will require considerable care if fish health and welfare, as well as product quality, are to be maintained, and the efficacy of n-3 highly unsaturated fatty acids (HUFA) in the prevention or modulation of many of the inflammatory conditions prevalent in the developed world is well established.
Abstract: It is estimated that by 2010 >85% of globally available fish oil (FO) and ~50% of fish meal (FM) will be consumed by aquaculture so, it is vital that reliance on marine raw materials is reduced and that sustainable aquafeeds are developed using more terrestrial plant products. In addition, levels of persistent organic pollutants (POPs), principally dioxins/furans and polychlorinated biphenyls (PCBs), in some European FO may breach new EU limits and prevent their use in aquafeeds. Current evidence suggests that salmonids can be grown on diets where 100% of the FO is replaced by vegetable oils (VO), and that bass and bream fed up to 60% VO showed no detrimental effects on growth. However, use of VO can result in reductions of the n-3 highly unsaturated fatty acids, DHA and EPA, of between 50% and 65%, although these values can be restored to 70–100% of the values in fish fed FO by the use of FO-containing finishing diets. Such high levels of FO replacement can only be used if essential fatty acid levels are maintained by inclusion of adequate FM levels. Simultaneous reductions in FM and FO will require considerable care if fish health and welfare, as well as product quality, are to be maintained. The efficacy of n-3 highly unsaturated fatty acids (HUFA), principally EPA and DHA, in the prevention or modulation of many of the inflammatory conditions prevalent in the developed world is well established. However, there is concern that the levels of POPs (dioxins, PCBs and PBDEs), as well as the presence of toxic metals, (e.g., Pb, As, Cd and Hg), present a potential risk to human health. The nutrients, as well as contaminants, found in fish flesh are derived largely from the feed and, thus, farmed fish can be tailored to provide optimal levels of fatty acids, and selected vitamins and minerals for human consumption.

99 citations

Journal ArticleDOI
TL;DR: In this article, the antioxidant properties of phospholipids (PL) in a refined salmon oil model system were measured by determining changes in the 2-thiobarbituric acid number and decreases in the ratio of docosahexaenoic acid (DHA)/palmitic acid.
Abstract: The antioxidant properties of phospholipids (PL) in a refined salmon oil model system were measured by determining changes in the 2-thiobarbituric acid number and decreases in the ratio of docosahexaenoic acid (DHA)/palmitic acid (22:6/16:0) of a fish oil system incubated at 180°C for up to 3 h. The more phosphatidylcholine (PC) added to the oil system, the higher the oxidative stability obtained. The order of effectiveness of commercial phospholipids in inhibiting oxidation and the loss of polyunsaturated fatty acids was as follows: sphingomyelin (SPH)=lysophosphatidylcholine (LPC)=phosphatidylcholine (PC)=phosphatidylethanolamine (PE)>phosphatidylserine (PS)>phosphatidylinositol (PI)>phosphatidylglycerol (PG)>control salmon oil. Nitrogen containing PL, including PE, PC, LPC and SPH, were equally effective in exerting greater antioxidant properties than PS, PG and PI. The inverse relationship observed between the oxidation index (C22:6/C16:0) and color intensity for treatments following 2 h of heating suggests that Maillard-type reaction products may have contributed to the oxidative stability of PL-supplemented fish oils.

99 citations

Journal ArticleDOI
01 Feb 2002-Lipids
TL;DR: Evidence in vivo is provided indicating that dietary FPA and DHA induce compositional changes in colonic mitochondrial membrane phospholipids that facilitate appotosis.
Abstract: There is experimental evidence that dietary fish oil, which contains the n-3 fatty acid family, i.e., EPA and DHA, protects against colon tumor development, in part by increasing apoptosis. Since mitochondria can act as central executioners of apoptosis, we hypothesized that EPA and DHA incorporation into colonocyte mitochondrial membranes, owing to their high degree of unsaturation, would enhance susceptibility to damage by reactive oxygen species (ROS) generated via oxidative phosphorylation. This, in turn, would compromise mitochondrial function, thereby initiating apoptosis. To test this hypothesis, colonic crypts were isolated from rats fed either fish oil, purified n-3 fatty acid ethyl esters, or corn oil (control). Dietary lipid source had no effect on colonic mitochondrial phospholipid class mole percentages, although incorporation of EPA and DHA was associated with a reduction in n-6 fatty acids known to enhance colon tumor development, i.e., linoleic acid LNA) and its metabolic product, arachidonic acid (ARA). Select compositional changes in major phospholipid pools were correlated to alterations in mitochondrial function as assessed by confocal microscopy. The mol% sum of LNA plus ARA in cardiolipin was inversely correlated with ROS (P = 0.024). Ethanolamine glycerophospholipid ARA (P = 0.046) and choline glycerophospholipid LNA (P = 0.033) levels were positively correlated to mitochondrial membrane potential. In contrast, ethanolamine glycerophospholipid EPA (P = 0.042) and DHA (P = 0.024) levels were negatively correlated to mitochondrial membrane potential. Additionally, EPA and DHA levels in choline glycerophospholipids (P = 0.026) were positively correlated with caspase 3 activity. These data provide evidence in vivo indicating that dietary EPA and DHA induce compositional changes in colonic mitochondrial membrane phospholipids that facilitate apoptosis.

99 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Adipose tissue
54.6K papers, 2.5M citations
79% related
Lipid peroxidation
42.4K papers, 1.8M citations
76% related
Ascorbic acid
93.5K papers, 2.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023259
2022552
2021308
2020347
2019326
2018360