scispace - formally typeset
Search or ask a question
Topic

Fish oil

About: Fish oil is a research topic. Over the lifetime, 9887 publications have been published within this topic receiving 367953 citations. The topic is also known as: fish oils & Fish oil.


Papers
More filters
Journal ArticleDOI
TL;DR: FO decreased bone loss in ovariectomized mice because of inhibition of osteoclastogenesis and this finding supports a beneficial effect of FO on the attenuation of osteoporosis.
Abstract: UNLABELLED The mechanisms of action of dietary fish oil (FO) on osteoporosis are not fully understood This study showed FO decreased bone loss in ovariectomized mice because of inhibition of osteoclastogenesis This finding supports a beneficial effect of FO on the attenuation of osteoporosis INTRODUCTION Consumption of fish or n-3 fatty acids protects against cardiovascular and autoimmune disorders Beneficial effects on bone mineral density have also been reported in rats and humans, but the precise mechanisms involved have not been described METHODS Sham and ovariectomized (OVX) mice were fed diets containing either 5% corn oil (CO) or 5% fish oil (FO) Bone mineral density was analyzed by DXA The serum lipid profile was analyzed by gas chromatography Receptor activator of NF-kappaB ligand (RANKL) expression and cytokine production in activated T-cells were analyzed by flow cytometry and ELISA, respectively Osteoclasts were generated by culturing bone marrow (BM) cells with 1,25(OH)2D3 NF-kappaB activation in BM macrophages was measured by an electrophoretic mobility shift assay RESULTS AND CONCLUSION Plasma lipid C16:1n6, C20:5n3, and C22:6n3 were significantly increased and C20:4n6 and C18:2n6 decreased in FO-fed mice Significantly increased bone mineral density loss (20% in distal left femur and 226% in lumbar vertebrae) was observed in OVX mice fed CO, whereas FO-fed mice showed only 10% and no change, respectively Bone mineral density loss was correlated with increased RANKL expression in activated CD4+ T-cells from CO-fed OVX mice, but there was no change in FO-fed mice Selected n-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) added in vitro caused a significant decrease in TRACP activity and TRACP+ multinuclear cell formation from BM cells compared with selected n-6 fatty acids (linoleic acid [LA] and arachidonic acid [AA]) DHA and EPA also inhibited BM macrophage NF-kappaB activation induced by RANKL in vitro TNF-alpha, interleukin (IL)-2, and interferon (IFN)-gamma concentrations from both sham and OVX FO-fed mice were decreased in the culture medium of splenocytes, and interleukin-6 was decreased in sham-operated FO-fed mice In conclusion, inhibition of osteoclast generation and activation may be one of the mechanisms by which dietary n-3 fatty acids reduce bone loss in OVX mice

270 citations

Journal ArticleDOI
TL;DR: The fish processing industry is a major exporter of seafood and marine products in many countries and fish proteins, amino acids, and fish oil have beneficial bioactivities including prevention of atherosclerosis, protection against maniac–depressive illness and various other medicinal properties.
Abstract: The fish processing industry is a major exporter of seafood and marine products in many countries. About 70% of the fish is processed before final sale. Processing of fish involves stunning, grading, slime removal, deheading, washing, scaling, gutting, cutting of fins, meat bone separation and steaks and fillets. During these steps significant amount of waste (20-80% depending upon the level of processing and type of fish) is generated which can be utilized as fish silage, fishmeal and fish sauce. Fish waste can also be used for production of various value added products such as proteins, oil, amino acids, minerals, enzymes, bioactive peptides, collagen and gelatin. The fish proteins are found in all parts of the fish. There are three types of proteins in fish: structural proteins, sacroplasmic proteins and connective tissue proteins. The fish proteins can be extracted by chemical and enzymatic process. In the chemical method, salts (NaCl and LiCl) and solvents (isopropanol and aezotropic isopropanol) are used, whereas during the enzymatic extraction, enzymes (alcalase, neutrase, protex, protemax and flavorzyme) are used to extract proteins from fish. These fish proteins can be used as a functional ingredient in many food items because of their properties (water holding capacity, oil absorption, gelling activity, foaming capacity and emulsifying properties). They can also be used as milk replacers, bakery substitutes, soups and infant formulas. The amino acids are the building blocks of protein. There are 16-18 amino acids present in fish proteins. The amino acids can be produced from fish protein by enzymatic or chemical processes. The enzymatic hydrolysis involves the use of direct protein substrates and enzymes such as alcalase, neutrase, carboxypeptidase, chymotrypsin, pepsin and trypsin. In the chemical hydrolysis process, acid or alkali is used for the breakdown of protein to extract amino acids. The main disadvantage of this method is the complete destruction of tryptophan and cysteine and partial destruction of tyrosine, serine and threonine. The amino acids present in the fish can be utilized in animal feed in the form of fishmeal and sauce or can be used in the production of various pharmaceuticals. The fish oil contains two important polyunsaturated fatty acids called EPA and DHA or otherwise called as omega-3 fatty acids. These omega-3 fatty acids have beneficial bioactivities including prevention of atherosclerosis, protection against maniac–depressive illness and various other medicinal properties. Fish oil can also be converted to non-toxic, biodegradable, environment friendly biodiesel using chemical or enzymatic transesterification.

270 citations

Journal ArticleDOI
TL;DR: Future trials will be needed to determine minimum effective dosages of eicosapentaenoic and docosahexaenoic acids over lengthy periods and to show cardiovascular disease reduction through intervention and the characteristic lipid changes and the underlying mechanisms are reviewed.

269 citations

Journal ArticleDOI
01 Jan 2011-Lipids
TL;DR: Krill oil and fish oil represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil, and no statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed.
Abstract: The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil.

267 citations

Journal ArticleDOI
TL;DR: Fasting blood insulin levels vary among fat subtypes, and a higher fasting blood insulin level in palm oil-fed mice may explain their better glycemic control irrespective of their marked obesity, indicate that obesity and aHigher intake of linoleic acid are independent risk factors for dysregulation of glucose tolerance.
Abstract: Mice fed a high-fat diet develop hyperglycemia and obesity. Using non-insulin-dependent diabetes mellitus (NIDDM) model mice, we investigated the effects of seven different dietary oils on glucose metabolism: palm oil, which contains mainly 45% palmitic acid (16:0) and 40% oleic acid (18:1); lard oil, 24% palmitic and 44% oleic acid; rapeseed oil, 59% oleic and 20% linoleic acid (18:2); soybean oil, 24% oleic and 54% linoleic acid; safflower oil, 76% linoleic acid; perilla oil, 58% alpha-linolenic acid; and tuna fish oil, 7% eicosapentaenoic acid and 23% docosahexaenoic acid. C57BL/6J mice received each as a high-fat diet (60% of total calories) for 19 weeks (n = 6 to 11 per group). After 19 weeks of feeding, body weight induced by the diets was in the following order: soybean > palm > or = lard > or = rapeseed > or = safflower > or = perilla > fish oil. Glucose levels 30 minutes after a glucose load were highest for safflower oil (approximately 21.5 mmol/L), modest for rapeseed oil, soybean oil, and lard (approximately 17.6 mmol/L), mild for perilla, fish, and palm oil (approximately 13.8 mmol/L), and minimal for high-carbohydrate meals (approximately 10.4 mmol/L). Only palm oil-fed mice showed fasting hyperinsulinemia (P < .001). By stepwise multiple regression analysis, body weight (or white adipose tissue [WAT] weight) and intake of linoleic acid (or n-3/n-6 ratio) were chosen as independent variables to affect glucose tolerance. By univariate analysis, the linoleic acid intake had a positive correlation with blood glucose level (r = .83, P = .02) but not with obesity (r = .46, P = .30). These data indicate that (1) fasting blood insulin levels vary among fat subtypes, and a higher fasting blood insulin level in palm oil-fed mice may explain their better glycemic control irrespective of their marked obesity; (2) a favorable glucose response induced by fish oil feeding may be mediated by a decrease of body weight; and (3) obesity and a higher intake of linoleic acid are independent risk factors for dysregulation of glucose tolerance.

266 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
89% related
Cholesterol
44.6K papers, 1.9M citations
85% related
Adipose tissue
54.6K papers, 2.5M citations
79% related
Lipid peroxidation
42.4K papers, 1.8M citations
76% related
Ascorbic acid
93.5K papers, 2.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023259
2022552
2021308
2020347
2019326
2018360