scispace - formally typeset
Search or ask a question
Topic

Flapping

About: Flapping is a research topic. Over the lifetime, 4278 publications have been published within this topic receiving 68323 citations. The topic is also known as: tapping & alveolar flapping.


Papers
More filters
Journal ArticleDOI
16 Aug 2001-Nature
TL;DR: It is reported that, at the Reynolds numbers matching the flows relevant for most insects, flapping wings do not generate a spiral vortex akin to that produced by delta-wing aircraft, and it is found that limiting spanwise flow with fences and edge baffles does not cause detachment of the leading-edge vortex.
Abstract: The flow structure that is largely responsible for the good performance of insect wings has recently been identified as a leading-edge vortex. But because such vortices become detached from a wing in two-dimensional flow, an unknown mechanism must keep them attached to (three-dimensional) flapping wings. The current explanation, analogous to a mechanism operating on delta-wing aircraft, is that spanwise flow through a spiral vortex drains energy from the vortex core. We have tested this hypothesis by systematically mapping the flow generated by a dynamically scaled model insect while simultaneously measuring the resulting aerodynamic forces. Here we report that, at the Reynolds numbers matching the flows relevant for most insects, flapping wings do not generate a spiral vortex akin to that produced by delta-wing aircraft. We also find that limiting spanwise flow with fences and edge baffles does not cause detachment of the leading-edge vortex. The data support an alternative hypothesis-that downward flow induced by tip vortices limits the growth of the leading-edge vortex.

685 citations

Journal ArticleDOI
TL;DR: In this paper, the aerodynamics of hovering insect flight are re-examined in this series of six papers, and a conclusion opposite to Weis-Fogh's is tentatively reached.
Abstract: The conventional aerodynamic analysis of flapping animal flight invokes the `quasisteady assumption' to reduce a problem in dynamics to a succession of static conditions: it is assumed that the instantaneous forces on a flapping wing are equivalent to those for steady motion at the same instantaneous velocity and angle of attack. The validity of this assumption and the importance of unsteady aerodynamic effects have long been controversial topics. Weis-Fogh tested the assumption for hovering animal flight, where unsteady effects are most pronounced, and concluded that most insects indeed hover according to the principles of quasi-steady aerodynamics. The logical basis for his conclusion is reviewed in this paper, and it is shown that the available evidence remains ambiguous. The aerodynamics of hovering insect flight are re-examined in this series of six papers, and a conclusion opposite to Weis-Fogh's is tentatively reached. New morphological and kinematic data for a variety of insects are presented in papers II and III, respectively. Paper IV offers an aerodynamic interpretation of the wing kinematics and a discussion on the possible roles of different aerodynamic mechanisms. A generalized vortex theory of hovering flight is derived in paper V, and provides a method of estimating the mean lift, induced power and induced velocity for unsteady as well as quasi-steady flight mechanisms. The new data, aerodynamic mechanisms and vortex theory are all combined in paper VI for an analysis of the lift and power requirements and other mechanical aspects of hovering flight. A large number of symbols are needed for the morphological, kinematic and aerodynamic analyses. Most of them appear in more than one paper of the series, and so a single comprehensive table defining the major symbols from all of the papers is presented at the end of this paper.

649 citations

Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: The dynamics of swimming fish and flapping flags involves a complicated interaction of their deformable shapes with the surrounding fluid flow, and it is found that, for a single filament, there are two distinct, stable dynamical states.
Abstract: The dynamics of swimming fish and flapping flags involves a complicated interaction of their deformable shapes with the surrounding fluid flow. Even in the passive case of a flag, the flag exerts forces on the fluid through its own inertia and elastic responses, and is likewise acted on by hydrodynamic pressure and drag. But such couplings are not well understood. Here we study these interactions experimentally, using an analogous system of flexible filaments in flowing soap films. We find that, for a single filament (or 'flag') held at its upstream end and otherwise unconstrained, there are two distinct, stable dynamical states. The first is a stretched-straight state: the filament is immobile and aligned in the flow direction. The existence of this state seems to refute the common belief that a flag is always unstable and will flap. The second is a flapping state: the filament executes a sinuous motion in a manner akin to the flapping of a flag in the wind. We study further the hydrodynamically coupled interaction between two such filaments, and demonstrate the existence of four different dynamical states.

599 citations

Journal ArticleDOI
Mao Sun1, Jian Tang1
TL;DR: A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing, finding that large lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value.
Abstract: A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier-Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.

528 citations

Journal ArticleDOI
TL;DR: Comparing computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane investigates unsteady effects and compares two-dimensional computations and three-dimensional experiments in several qualitatively different kinematic patterns.
Abstract: We compare computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane. In particular, we investigate unsteady effects and compare two-dimensional (2D) computations and three-dimensional (3D) experiments in several qualitatively different kinematic patterns. In all cases, the computed drag compares well with the experiments. The computed lift agrees in the cases in which the sinusoidal changes in angle of attack are symmetrical or advanced with respect to stroke positions, but lags behind the measured 3D lift in the delayed case. In the range of amplitudes studied here, 3-5 chords, the force coefficients have a weak dependence on stroke amplitude. As expected, the forces are sensitive to the phase between stroke angle and angle of attack, a result that can be explained by the orientation of the wing at reversal. This dependence on amplitude and phase suggests a simple maneuver strategy that could be used by a flapping wing device. In all cases the unsteady forces quickly reach an almost periodic state with continuous flapping. The fluid forces are dominated by the pressure contribution. The force component directly proportional to the linear acceleration is smaller by a factor proportional to the ratio of wing thickness and stroke amplitude; its net contribution is zero in hovering. The ratio of wing inertia and fluid force is proportional to the product of the ratio of wing and fluid density and the ratio of wing thickness and stroke amplitude; it is negligible in the robotic wing experiment, but need not be in insect flight. To identify unsteady effects associated with wing acceleration, and coupling between rotation and translation, as well as wake capture, we examine the difference between the unsteady forces and the estimates based on translational velocities, and compare them against the estimate of the coupling between rotation and translation, which have simple analytic forms for sinusoidal motions. The agreement and disagreement between the computed forces and experiments offer further insight into when the 3D effects are important. A main difference between a 3D revolving wing and a 2D translating wing is the absence of vortex shedding by a revolving wing over a distance much longer than the typical stroke length of insects. No doubt such a difference in shedding dynamics is responsible in part for the differences in steady state force coefficients measured in 2D and 3D. On the other hand, it is unclear whether such differences would have a significant effect on transient force coefficients before the onset of shedding. While the 2D steady state force coefficients underpredict 3D forces, the transient 2D forces measured prior to shedding are much closer to the 3D forces. In the cases studied here, the chord is moving between 3 to 5 chords, typical of hovering insect stroke length, and the flow does not appear to separate during each stroke in the cases of advanced and symmetrical rotation. In these cases, the wing reverses before the leading edge vortex would have time to separate even in 2D. This suggests that the time scale for flow separation in these strokes is dictated by the flapping frequency, which is dimensionally independent. In such cases, the 2D unsteady forces turn out to be good approximations of 3D experiments.

505 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
81% related
Turbulence
112.1K papers, 2.7M citations
79% related
Laminar flow
56K papers, 1.2M citations
79% related
Boundary layer
64.9K papers, 1.4M citations
78% related
Vortex
72.3K papers, 1.3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023225
2022504
2021214
2020210
2019267
2018270