scispace - formally typeset
Search or ask a question

Showing papers on "Flavanone published in 2022"


Journal ArticleDOI
09 Apr 2022
TL;DR: Narirutin is a disaccharide derivative available in citrus fruits, primarily dihydroxy flavanone as mentioned in this paper , which falls to the category of polyphenols.
Abstract: Plant-based phytochemicals are now being used to treat plenty of physiological diseases. Herbal drugs have gained popularity in recent years because of their strength, purity, and cheap cost-effectiveness. Citrus fruits contain significant amounts of flavanones, which falls to the category of polyphenols. Flavanones occupy a major fraction of the total polyphenols present in the plasma when orange juice is taken highly or in moderate states. Narirutin is a disaccharide derivative available in citrus fruits, primarily dihydroxy flavanone. From a pharmacological viewpoint, narirutin is a bioactive phytochemical with therapeutic efficacy. Many experimental researches were published on the use of narirutin. Anticancer activity, neuroprotection, stress relief, hepatoprotection, anti-allergic activity, antidiabetic activity, anti-adipogenic activity, anti-obesity action, and immunomodulation are a couple of the primary pharmacological properties. Narirutin also has antioxidant, and anti-inflammatory activities. The ultimate goal of this review is to provide the current scenario of pharmacological research with narirutin; to make a better understanding for therapeutic potential of narirutin, as well as its biosynthesis strategies and side effects. Extensive literature searches and studies were undertaken to determine the pharmacological properties of narirutin.

48 citations


Journal ArticleDOI
TL;DR: In this article, the contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography using flight-mass spectrometry for untargeted metabolomics analysis.

21 citations


Journal ArticleDOI
TL;DR: In this article , the contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography and quadrupole time of flight-mass spectrometry.

21 citations


Journal ArticleDOI
TL;DR: In this paper , a multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants, and the results showed that a conserved core of the pathway for PC biosynthesis is shared horizontally in all microalgae.
Abstract: Among the most relevant bioactive molecules family, phenolic compounds (PCs) are well known in higher plants, while their knowledge in microalgae is still scarce. Microalgae represent a novel and promising source of human health benefit compounds to be involved, for instance, in nutraceutical composition. This study aims to investigate the PCs biosynthetic pathway in the microalgal realm, exploring its potential variability over the microalgal biodiversity axis. A multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants. This study explores their presence in ten groups of prokaryotic and eukaryotic microalgae.. Analyses were carried out taking into account a wide selection of algal protein homologs, functional annotation of conserved domains and motifs, and maximum-likelihood tree construction. Results showed that a conserved core of the pathway for PCs biosynthesis is shared horizontally in all microalgae. Conversely, the ability to synthesize some subclasses of phenolics may be restricted to only some microalgal groups (i.e., Chlorophyta) depending on featured enzymes, such as the flavanone naringenin and other related chalcone isomerase dependent compounds.

18 citations


Journal ArticleDOI
TL;DR: In this article , a multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants, and the results showed that a conserved core of the pathway for PC biosynthesis is shared horizontally in all microalgae.
Abstract: Among the most relevant bioactive molecules family, phenolic compounds (PCs) are well known in higher plants, while their knowledge in microalgae is still scarce. Microalgae represent a novel and promising source of human health benefit compounds to be involved, for instance, in nutraceutical composition. This study aims to investigate the PCs biosynthetic pathway in the microalgal realm, exploring its potential variability over the microalgal biodiversity axis. A multistep in silico analysis was carried out using a selection of core enzymes from the pathway described in land plants. This study explores their presence in ten groups of prokaryotic and eukaryotic microalgae.. Analyses were carried out taking into account a wide selection of algal protein homologs, functional annotation of conserved domains and motifs, and maximum-likelihood tree construction. Results showed that a conserved core of the pathway for PCs biosynthesis is shared horizontally in all microalgae. Conversely, the ability to synthesize some subclasses of phenolics may be restricted to only some microalgal groups (i.e., Chlorophyta) depending on featured enzymes, such as the flavanone naringenin and other related chalcone isomerase dependent compounds.

16 citations


Journal ArticleDOI
TL;DR: Key hydroxylases in the flavonoid biosynthesis pathway are promising targets for the future bioengineering of plants and mass production of flavonoids with designatedHydroxylation patterns of high nutritional importance.
Abstract: Abstract Flavonoids are the most widespread polyphenolic compounds and are important dietary constituents present in horticultural crops such as fruits, vegetables, and tea. Natural flavonoids are responsible for important quality traits, such as food colors and beneficial dietary antioxidants, and numerous investigations have shown that intake of flavonoids can reduce the incidence of various non-communicable diseases. Analysis of the thousands of flavonoids reported so far has shown that different hydroxylation modifications affect their chemical properties and nutritional values. These diverse flavonoids can be classified based on different hydroxylation patterns in the B, C, and A rings and multiple structure–activity analyses have shown that hydroxylation decoration at specific positions markedly enhances their bioactivities. This review focuses on current knowledge concerning hydroxylation of flavonoids catalyzed by several different types of hydroxylase enzymes. Flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′5′-hydroxylase (F3′5′H) are important enzymes for the hydroxylation of the B ring of flavonoids. Flavanone 3-hydroxylase (F3H) is key for the hydroxylation of the C ring, while flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H) are key enzymes for hydroxylation of the A ring. These key hydroxylases in the flavonoid biosynthesis pathway are promising targets for the future bioengineering of plants and mass production of flavonoids with designated hydroxylation patterns of high nutritional importance. In addition, hydroxylation in key places on the ring may help render flavonoids ready for degradation, and the catabolic turnover of flavonoids may open the door for new lines of inquiry.

14 citations


Journal ArticleDOI
TL;DR: In this article , 11 flavonoids were isolated and identified from Shatianyu pulp flavonoid extracts (SPFEs). Among them, 4 were previously undescribed and 2 were firstly isolated from pummelo.

12 citations


Journal ArticleDOI
TL;DR: In this paper, 11 flavonoids were isolated and identified from Shatianyu pulp flavonoid extracts (SPFEs). Among them, 4 were previously undescribed and 2 were firstly isolated from pummelo.

12 citations


Journal ArticleDOI
TL;DR: In this article, the effect of food matrix elements on the flavanone profile of grapefruit peel (GFP) and on the gut microbiota during in vitro digestion and simulated colonic fermentation was assessed.

12 citations


Journal ArticleDOI
TL;DR: In this paper , the effect of food matrix elements [dietary fibres (DFs)] on the flavanone profile of grapefruit peel and on the gut microbiota during in vitro digestion and simulated colonic fermentation was assessed.

12 citations


Journal ArticleDOI
TL;DR: In this paper , the alpha-glucosidase inhibitory activities and antioxidant capacities of H. cymosum and H. pandurifolium were investigated. But none of these compounds showed a measurable inhibitory effect on alpha-amylase under the experimental conditions used except compound 10 which showed a poor alpha-gamylase inhibitORY activity with an IC50 value of 230.66 ± 15.8 μM.
Abstract: Diabetes mellitus (DM) is a group of systemic metabolic disorders with a high rate of morbidity and mortality worldwide. Due to the detrimental side effects of the current treatment, there is a great need to develop more effective antidiabetic drugs with fewer side effects. Natural products are a well-known source for the discovery of new scaffolds for drug discovery, including new antidiabetic drugs. The genus Helichrysum has been shown to produce antidiabetic natural products. In this investigation, the methanolic extract of H. cymosum and H. pandurifolium resulted in the isolation and identification of eleven known compounds viz 5,8-dihydroxy-7-methoxy-2-phenyl flavanone (1), pinostrobin (2), dihydrobaicalein (3), glabranin (4), allopatuletin (5), pinostrobin chalcone (6), helichrysetin (7), 5-hydroxy-3,7-dimethoxyflavone (8), 3,5-dihydroxy-6,7,8-trimethoxyflavone (9), 3-O-methylquercetin (10), and 3-methylethergalangin (11). The in vitro bio-evaluation of isolated compounds against alpha-glucosidase showed that 10, 5, and 11 demonstrated the highest alpha-glucosidase inhibitory activity with IC50 values of 9.24 ± 0.4, 12.94 ± 0.2, and 16.00 ± 2.4 μM respectively, followed by 7 and 3 with IC50 values of 18.16 ± 1.2 and 44.44 ± 0.2 μM respectively. However, none of these compounds showed a measurable inhibitory effect on alpha-amylase under the experimental conditions used except compound 10 which showed a poor alpha-amylase inhibitory activity with an IC50 value of 230.66 ± 15.8 μM. Additionally, strong total antioxidant capacities were demonstrated by 10, 5 and 7 in ferric-ion reducing antioxidant power assay (374.34 ± 69.7; 334.37 ± 1.7; 279.93 ± 0.8) µmol AAE/mmol. This is the first scientific report to be carried out on alpha-glucosidase inhibitory activities and antioxidant capacities of H. cymosum constituents and a first report on the isolation and identification of methoxyflavanoids from H. pandurifolium. Our findings suggest that these compounds are promising candidates to inhibit alpha-glucosidase as well as oxidative stress related to diabetes. Results from molecular docking provided insight into the observed in vitro alpha-glucosidase inhibitory activities for 5, 7, 10, and 11. It is envisaged that the isolated phytochemicals from these plants may contribute to the development of hypoglycemic lead compounds with anti-diabetic potential.

Journal ArticleDOI
TL;DR: In this article , one of the key flavonoid biosynthesis genes, flavanone 3-hydroxylase (F3H), was characterized from Dendrobium officinale.

Journal ArticleDOI
TL;DR: In this paper , thirty chalcone-flavanone isomerase (CHI) genes were identified for the first time in six Citrus species, which were divided into CHI and FAP groups.
Abstract: Citrus fruit contains rich nutrients which is edible and of officinal value. Citrus flavanones are widely used in the treatment of cardiovascular and other diseases, and they are a foundational material of Chinese medicine. The chalcone-flavanone isomerase (CHI) plays a key role in flavanone synthesis. Therefore, we comprehensively analyzed CHI genes in Citrus species. Here, thirty CHI genes were identified for the first time in six Citrus species, which were divided into CHI and FAP groups. Evolutionary analysis showed that CHI gene members were highly conserved and were an ancient family. All CsCHI genes showed the highest expression level after the second physiological fruit-falling period in C. sinensis. CsCHI1 and CsCHI3 were highly expressed at 50 days after the flowering (DAF) stage in albedo. The expression of CsFAP2 and CsCHI3 genes at the 50 DAF stage was 16.5 and 24.3 times higher than that at the 220 DAF stage, respectively. The expression of CsCHI1, CsCHI3, and CsFAP2 genes in the peel was higher than that in the pulp, especially in common sweet orange. The CsCHI3 gene maintained a high expression level in the epicarp and juice sac at all periods. The members of CHIs interacted with chalcone synthase (CHS), flavonol synthase/flavanone 3-hydroxylase (FLS) and naringenin, and 2-oxoglutarate 3-dioxygenase (F3H) to form heterodimers, which might together play a regulatory role and participate in the flavonoid pathway. This study will provide the basis for the selection of flavonoids in plant tissues and periods and fundamental information for further functional studies.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper cloned and characterized MazsF3H from Morus atropurpurea var. Zhongshen and found that it belonged to 2-oxoglutarate-dependent dioxygenase.
Abstract: Mulberry (Morus spp., Moraceae) is an important economic crop plant and is rich in flavonoids and anthocyanidins in ripe fruits. Anthocyanins are glycosides of anthocyanidins. Flavanone 3-hydroxylase (F3H) catalyzes the conversion of naringenin into dihydroflavonols and is responsible for the biosynthesis of flavonols and anthocyanidins. In this study, MazsF3H was cloned and characterized from Morus atropurpurea var. Zhongshen 1. Conserved motif analysis based on alignment and phylogenetic analysis indicated that MazsF3H belonged to 2-oxoglutarate-dependent dioxygenase and MazsF3H clustered with F3Hs from other plants. MazsF3H was located in both nucleus and cytosol. MazsF3H was expressed in stems, leaves, stigmas and ovaries, except buds. F3H expression levels showed a positive and close relationship with anthocyanin content during the anthocyanin-rich fruit ripening process, while it showed a negative correlation with anthocyanin content in LvShenZi, whose fruits are white and would not experience anthocyanin accumulation during fruit ripening. Significantly different F3H expression levels were also found in different mulberry varieties that have quite different anthocyanin contents in ripe fruits. Overexpression MazsF3H in tobacco showed unexpected results, including decreased anthocyanin content. Down-regulation of F3H expression levels resulted in co-expression of the genes involved in anthocyanin biosynthesis and a significant decrease in anthocyanin content, but the change in total flavonoid content was subtle. Our results indicated that F3H may play quite different roles in different varieties that have quite different fruit colors. In addition, possible complex regulation of flavonoid biosynthesis should be further explored in some of the featured plant species.

Journal ArticleDOI
TL;DR: This synergistic project culminated with acquisition of the naturally unprecedented flavanones with better antifungal potentials than sakuranetin, in which the R-enantiomer of flavanone 54 (EC50 = 0.8 μM) demonstrated better performance than boscalid against Rhizoctonia solani.
Abstract: Discovery and efficient synthesis of new promising leads have a central role in agrochemical science. Reported herein is the sakuranetin-directed synergistic exploration of an asymmetric synthesis and an antifungal evaluation of chiral flavanones. A new palladium catalytic system with CarOx-type ligands was successfully identified for the highly enantioselective addition of arylboronic acids to chromones. This enabled the facile and programmable construction of a constellation of chiral flavanones (up to 98% yield and 97% ee), in which (R)-pinostrobin was efficiently constructed without laborious protecting/deprotecting operations. Its good performance in asymmetric induction and functional tolerance expanded the chemical space of pharmaceutically important flavanones. The chiral differentiation of flavanones based on antifungal activity and a concise structure-activity relationship model was disclosed and summarized. This synergistic project culminated with acquisition of the naturally unprecedented flavanones with better antifungal potentials than sakuranetin, in which the R-enantiomer of flavanone 54 (EC50 = 0.8 μM) demonstrated better performance than boscalid against Rhizoctonia solani. The novel scaffold and predicted new target compared with the commercial fungicides in the FRAC reinforce the value of further exploration.

Journal ArticleDOI
TL;DR: Results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis.
Abstract: Flavonoid glycosides are typical bitter and astringent tasting compounds that contribute to the taste of tea beverages. However, the genes that contribute to the biosynthesis of bitter compounds (e.g., flavanone 7-O-neohesperidoside) in tea plants have yet to be identified. In this study, we identified 194 UDP-glycosyltransferases (UGTs) from the tea transcriptome database. Among them, two genes, CsUGT75L12 and CsUGT79B28, encoding flavonoid 7-O-glycosyltransferase and 7-O-glucoside(1→2)rhamnosyltransferase, respectively, were identified from Camellia sinensis. In vitro, the purified recombinant enzyme rCsUGT75L12 specifically transports the glucose unit from UDP-glucose to the 7-OH position of the flavonoid to produce the respective 7-O-glucoside. rCsUGT79B28 regiospecifically transfers a rhamnose unit from UDP-rhamnose to the 2″-OH position of flavonoid 7-O-glucosides to produce flavonoid 7-O-di-glycosides. Additionally, the expression profiles of the two CsUGTs were correlated with the accumulation patterns of 7-O-glucoside and 7-O-neohesperidoside, respectively, in tea plants. These results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis. Taken together, our findings provided not only molecular insights into flavonoid di-glycoside metabolism in tea plants but also crucial molecular markers for controlling the bitterness and astringent taste of tea.

Journal ArticleDOI
TL;DR: In this paper , six new compounds, globunones A-F (1-6), and two new flavonoids (7 and 8) together with nine known compounds (9-17) were isolated from the stems of Knema globularia.
Abstract: Six new compounds, globunones A-F (1-6), and two new flavonoids (7 and 8) together with nine known compounds (9-17) were isolated from the stems of Knema globularia. The chemical structures of 1-8 were elucidated by an analysis of their NMR and high-resolution electrospray ionization mass spectrometry data as well as by comparison with literature values. The absolute configurations were determined using time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD). Globunones A-E (1-5) represent the initial combined structures of a flavan-3-ol core and a 1,4-benzoquinone core. Globunone F (6) is the first flavanone-type compound bearing a 2-(2,4-dihydroxyphenyl)-2-oxoethyl group found to date in Nature. Compounds 1-3 and 6-17 were tested for their yeast α-glucosidase inhibitory activity. All compounds tested (except for 13 and 14) showed potent inhibition toward α-glucosidase with IC50 values in the range 0.4-26.6 μM. Calodenin A (15) was the most active compound with an IC50 value of 0.4 μM (the positive control, acarbose, IC50 93.6 μM). A kinetic analysis of 15 revealed that it is a noncompetitive inhibitor with a Ki value of 3.4 μM.

Journal ArticleDOI
TL;DR: In this article , a chiral mechanism was proposed based on the carbon lengths between flavanone and hesperetin molecules in bis-imino-flavans, and the results confirmed the binding order of the enantiomers with maximum bing of SR-enantiomers.


Journal ArticleDOI
TL;DR: In this article , the authors tested thymol and menthol as hydrogen bond donors when combined with different flavonoids and found that the resulting deviations from ideality were associated with the presence of stronger interactions in the mixture than in pure DES precursors.
Abstract: The formation of deep eutectic solvents (DES) is tied to negative deviations to ideality caused by the establishment of stronger interactions in the mixture than in the pure DES precursors. This work tested thymol and menthol as hydrogen bond donors when combined with different flavonoids. Negative deviations from ideality were observed upon mixing thymol with either flavone or flavanone, two parent flavonoids that only have hydrogen bond acceptor (HBA) groups, thus forming non-ionic DES (Type V). On the other hand, the menthol systems with the same compounds generally showed positive deviations from ideality. That was also the case with the mixtures containing the more complex hydroxylated flavonoid, hesperetin, which resulted in positive deviations when mixed with either thymol or menthol. COSMO-RS successfully predicted the behavior of the solid-liquid phase diagram of the studied systems, allowing for evaluation of the impact of the different contributions to the intermolecular interactions, and proving to be a good tool for the design of DES.

Journal ArticleDOI
TL;DR: The plant source of TGP is M. tanarius, and this plant has the enormous potential to be developed as a pharmaceutical plant due to the potent biological activities and the high amount of functional propolins.
Abstract: Taiwanese green propolis (TGP) is widely used in traditional medicine and exerts a broad spectrum of biological activities, including those anti-inflammatory and anti-cancer in nature, resulting from an abundant level of functional propolins (prenylated flavanone) in the TGP. However, the plant origin of TGP has not been clarified. In this study, we collected the surface material of Macaranga tanarius fruit and comparatively analyzed the chemical composition, antibacterial activity, and antioxidant activity with TGP. The results revealed that there was no difference between the chemical composition of the glandular trichome extract of M. tanarius and those in propolis. Moreover, M. tanarius fruit extract was enriched in propolins (C, D, F, and G) and effectively inhibited the growth of Gram-positive strains. Propolins, TGP, and M. tanarius fruit extract showed powerful free radical-scavenging and ferrous-reducing activity. Collectively, we have confirmed the plant source of TGP is M. tanarius, and this plant has the enormous potential to be developed as a pharmaceutical plant due to the potent biological activities and the high amount of functional propolins.

Journal ArticleDOI
16 Jan 2022
TL;DR: In this paper , a series of reactions with isolated natural flavonoids (2-phenylchromen-4-one) and flavanone (2,3-dihydro-2-PNCL-1) through Mannich base was carried out by a one-pot three-component reaction.
Abstract: In our current study, a series of reactions with isolated natural flavonoids (2-phenylchromen-4-one) and flavanone (2,3-dihydro-2-phenylchromen-4-one) through Mannich base was carried out by a one-pot three-component reaction. Their structure-activity relationship study (SAR) reveals the anticancer activity of natural compounds and their Mannich bases. The flavones were substituted by imine at position C-8, while in the flavanones, the reaction takes place at positions C-8 and C-3. Spectroscopic techniques characterized all the isolated and newly synthesized derivatives. Anticancer activity was checked on HeLa and MCF-7 (cancer cell lines) and BHK-21 (normal cell line). Using propidium iodide (PI) and DAPI staining as fluorescence microscopic imaging was confirmed the Apoptotic effect of potent compound. Further, it was evaluated by cell cycle analysis through flow-cytometry, reactive oxygen species and lactate dehydrogenase production. The caspase-9 and -3 activity were estimated by mitochondrial membrane potential. Derivative of naringenin, ((2S)-4′,5,7-Trihydroxyflavan-4-one) where reactions occur at position C-3 were active than others.

Journal ArticleDOI
TL;DR: In this article , the authors aimed to recognize the recent literature to highlight the pharmacological impacts and highlight the therapeutic potential of the active molecule eriocitrin, which is more potent in suppressing oxidative stress in diabetes mellitus (DM) and other chronic diseases incurred by excessive oxidative stress.

Journal ArticleDOI
TL;DR: In this article , a modified triangle MDF algorithm for progressive screening and sub-type classification was used to acquire the chemical profile of flavonoids in Scutellaria barbata, and the obtained results demonstrated that the modified MDF was capable of simplifying the workload in formula editing and subsequent screening process and distinguishing different subtypes.

Journal ArticleDOI
TL;DR:
Abstract: Flavones predominantly accumulate as O- and C-glycosides in kumquat plants. Two catalytic mechanisms of flavone synthase II (FNSII) support the biosynthesis of glycosyl flavones, one involving flavanone 2-hydroxylase (which generates 2-hydroxyflavanones for C-glycosylation) and another involving the direct catalysis of flavanones to flavones for O-glycosylation. However, FNSII has not yet been characterized in kumquats. In this study, we identified two kumquat FNSII genes (FcFNSII-1 and FcFNSII-2), based on transcriptome and bioinformatics analysis. Data from in vivo and in vitro assays showed that FcFNSII-2 directly synthesized apigenin and acacetin from naringenin and isosakuranetin, respectively, whereas FcFNSII-1 showed no detectable catalytic activities with flavanones. In agreement, transient overexpression of FcFNSII-2 in kumquat peels significantly enhanced the transcription of structural genes of the flavonoid-biosynthesis pathway and the accumulation of several O-glycosyl flavones. Moreover, studying the subcellular localizations of FcFNSII-1 and FcFNSII-2 demonstrated that N-terminal membrane-spanning domains were necessary to ensure endoplasmic reticulum localization and anchoring. Protein–protein interaction analyses, using the split-ubiquitin yeast two-hybrid system and bimolecular fluorescence-complementation assays, revealed that FcFNSII-2 interacted with chalcone synthase 1, chalcone synthase 2, and chalcone isomerase-like proteins. The results provide strong evidence that FcFNSII-2 serves as a nucleation site for an O-glycosyl flavone metabolon that channels flavanones for O-glycosyl flavone biosynthesis in kumquat fruits. They have implications for guiding genetic engineering efforts aimed at enhancing the composition of bioactive flavonoids in kumquat fruits.

Journal ArticleDOI
TL;DR: In this article , a nontargeted metabolomics approach combined with absolute quantifications was applied to comprehensively investigate the chemical compositions of Maojian tea and to determine the effects of the processing methods on compounds.

Journal ArticleDOI
TL;DR: The data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.
Abstract: Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.

Journal ArticleDOI
TL;DR: In this paper , a multi-step in vivo cascade biocatalyst for the biotransformation of naringenin to hesperetin was presented in an engineered Escherichia coli consortium.
Abstract: Hesperetin, a methoxylated flavanone, has numerous biological activities. Access to this compound is currently restricted by its low abundance in plants, which limits its practical applicability. To provide an alternative, eco-friendly production source, we developed a biosynthetic pathway of hesperetin in an engineered Escherichia coli consortium, which was fed with naringenin as a precursor and demonstrated good hesperetin production. The biosynthetic pathway was divided into two modules. The first recombinant host harbored the pathway genes from two different species: a flavonoid 3'-hydroxylase (F3'H) gene from Gentiana triflora and a cytochrome P450 reductase (CPR) gene from Arabidopsis thaliana. The second strain heterologously expressed a gene encoding a flavonoid 4'-O-methyltransferase (MpOMT) from Mentha × piperita, which was N-terminally fused to a Sumo tag. A construct expressing a 29 aa N-terminally truncated F3'H and CPR was the most effective combination for the conversion of naringenin. The strain expressing the Sumo-tagged MpOMT protein exhibited an increase in the final hesperetin titer, reaching 5.9 mg/L. Simultaneous overexpression of metK (coding for the endogenous S-adenosyl-l-methionine [SAM] synthase) further improved the hesperetin titer by 25.1%. Finally, the designed E. coli consortium harboring the two modules efficiently converted naringenin to hesperetin (37.1 mg/L). This work reports the construction of a multi-step in vivo cascade biocatalyst for the biotransformation of naringenin to hesperetin. It also illustrates the potential of the E. coli consortium system for producing other O-methylated flavonoids.

Journal ArticleDOI
TL;DR: Molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors are revealed.
Abstract: Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal women’s pulse-wave velocity (PWV), a measure of arterial stiffness. However, mechanisms of flavanone action in humans are largely unknown. This study aimed to decipher molecular mechanisms of flavanones by multi-omics analysis in PBMCs of volunteers consuming GFJ and flavanone-free control drink for 6 months. Modulated genes and microRNAs (miRNAs) were identified using microarrays. Bioinformatics analyses assessed their functions, interactions and correlations with previously observed changes in PWV. GFJ modified gene and miRNA expressions. Integrated analysis of modulated genes and miRNA-target genes suggests regulation of inflammation, immune response, cell interaction and mobility. Bioinformatics identified putative mediators of the observed nutrigenomic effect (STAT3, NF-κB) and molecular docking demonstrated potential binding of flavanone metabolites to transcription factors and cell-signaling proteins. We also observed 34 significant correlations between changes in gene expression and PWV. Moreover, global gene expression was negatively correlated with gene expression profiles in arterial stiffness and hypertension. This study revealed molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors. Clinical Trial Registration [ClinicalTrials.gov], identifier [NCT01272167].

Journal ArticleDOI
TL;DR: Detailed molecular characterisation identified a methyltransferase responsible for chemical ornamentation of the core flavanone structure of pinocembrin and helps shed light on the mechanism of flavan one biosynthesis in Eucalyptus.
Abstract: Flavonoids are ubiquitous polyphenolic compounds in plants, long recognised for their health-promoting properties in humans. Methylated flavonoids have received increasing attention due to the potential of methylation to enhance medicinal efficacy. Recently, Eucalyptus species with high levels of the O-methylated flavanone pinostrobin have been identified. Pinostrobin has potential commercial value due to its numerous pharmacological and functional food benefits. Little is known about the identity or mode of action of the enzymes involved in methylating flavanones. This study aimed to identify and characterise the methyltransferase(s) involved in the regiospecific methylation of pinostrobin in Eucalyptus and thereby add to our limited understanding of flavanone biosynthesis in plants. RNA-seq analysis of leaf tips enabled the isolation of a gene encoding a flavanone 7-O-methyltransferase (EnOMT1) in Eucalyptus. Biochemical characterisation of its in vitro activity revealed a range of substrates upon which EnOMT1 acts in a regiospecific manner. Comparison to a homologous sequence from a Eucalyptus species lacking O-methylated flavonoids identified critical catalytic amino acid residues within EnOMT1 responsible for its activity. This detailed molecular characterisation identified a methyltransferase responsible for chemical ornamentation of the core flavanone structure of pinocembrin and helps shed light on the mechanism of flavanone biosynthesis in Eucalyptus.