scispace - formally typeset
Search or ask a question
Topic

Flavanone

About: Flavanone is a research topic. Over the lifetime, 1965 publications have been published within this topic receiving 54729 citations. The topic is also known as: flavanones.


Papers
More filters
Journal ArticleDOI
TL;DR: Chitosan fibres were grafted with flavonoids using tyrosinase to produce reactive o-quinones which subsequently react with primary amino groups of the chitosin this paper.

152 citations

Journal ArticleDOI
TL;DR: The results presented in this work strongly support the notion that intracellular binding of iron is responsible for the protection offered by flavonoids against H2O2-induced DNA damage.

150 citations

Journal ArticleDOI
TL;DR: The functional and structural studies support the proposal that CHI accelerates the stereochemically defined intramolecular cyclization of chalcones into biologically active (2S)-flavanones by selectively binding an ionized chalcone in a conformation conducive to ring closure in a diffusion-controlled reaction.

149 citations

Journal ArticleDOI
TL;DR: This work reviews the current status of flavanone production technology using microorganisms, with focus on heterologous protein expression and issues of importance, including fermentation configurations and economics, are considered.
Abstract: Polyphenols produced in a wide variety of flowering and fruit-bearing plants have the potential to be valuable fine chemicals for the treatment of an assortment of human maladies. One of the major constituents within this chemical class are flavonoids, among which flavanones, as the precursor to all flavonoid structures, are the most prevalent. We review the current status of flavanone production technology using microorganisms, with focus on heterologous protein expression. Such processes appear as attractive production alternatives for commercial synthesis of these high-value chemicals as traditional chemical, and plant cell cultures have significant drawbacks. Other issues of importance, including fermentation configurations and economics, are also considered.

147 citations

Journal ArticleDOI
TL;DR: This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.
Abstract: Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3β-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.

146 citations


Network Information
Related Topics (5)
Flavonoid
2.4K papers, 130.8K citations
86% related
Flavones
3K papers, 109.7K citations
84% related
Quercetin
7.7K papers, 333.3K citations
84% related
Kaempferol
5.7K papers, 166.1K citations
84% related
Caffeic acid
7.1K papers, 255.4K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
2022145
202165
202049
201944
201848