scispace - formally typeset
Search or ask a question
Topic

Flavanone

About: Flavanone is a research topic. Over the lifetime, 1965 publications have been published within this topic receiving 54729 citations. The topic is also known as: flavanones.


Papers
More filters
Journal ArticleDOI
TL;DR: The major flavonoids in rice leaves were analyzed via LC-MS/MS after their total flavonoid extracts were hydrolyzed and cloned and characterized OsFNS, which catalyzes the reaction from flavanone (naringenin) to flavone (apigenin).
Abstract: The major flavonoids in rice leaves were analyzed via LC-MS/MS after their total flavonoid extracts were hydrolyzed. The most abundant flavones were apigenin, luteolin, and tricetin. Of these, tricetin was methylated at its 3′ and 5′-hydroxyl group to form tricin, which was probablyO-glycosylated. Both 3′-O-methylated luteolin and luteolin were found in theC-glycosylated form while apigenin wasC-glycosylated. We also cloned and characterizedOsFNS, which catalyzes the reaction from flavanone (naringenin) to flavone (apigenin). Analysis of the reaction product with recombinant OsFNS showed that it indeed converts naringenin to apigenin.

44 citations

Journal ArticleDOI
TL;DR: The whole cells and the chloroperoxidase enzyme of Caldariomyces fumago were capable of halogenating the flavanones, naringenin and hesperetin, at C-6 and C-8 in the presence of either Cl- or Br-.

44 citations

Journal ArticleDOI
TL;DR: Three naturally occurring di-C-glycosylflavonoids, phloretin (dihydrochalcone), naringenin (flavanone), and apigenin (Flavone) bis-6,8-C -beta-D-glucopyranosides (4, 5, and 6), were synthesized in total yields of 52.3%, 53.5%, and 36.4%, respectively.

44 citations

Journal ArticleDOI
TL;DR: A mechanism of 3-deoxyflavonoid biosynthesis in sinningia similar to that reported for Zea mays is suggested, in which lack of F3H activity allows action of the DFR/FNR on flavanone substrates and production of flavan-4-ols.
Abstract: 3-Deoxyanthocyanins provide bright orange-red colours to flowers of some members of the Gesneriaceae, including sinningia (Sinningia cardinalis). We examined 3-deoxyanthocyanin biosynthesis in sinningia, in particular, the expression of key flavonoid biosynthetic genes and the activities of the encoded proteins. Two abundant 3-deoxyanthocyanins, luteolinidin 5-O-glucoside and apigeninidin 5-O-glucoside, three flavone glycosides, luteolin 7-O-glucoside, luteolin 7-O-glucuronide and apigenin 7-O-glucuronide, and the cinnamic acid verbascoside were identified in sinningia petal tissue. Small amounts of a 3-hydroxyanthocyanin were also detected in a limited region of the petal. cDNA clones for three flavonoid enzymes, flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase/flavanone 4-reductase (DFR/FNR) and anthocyanidin synthase (ANS), were isolated from a sinningia cDNA library made from petal RNA and used to measure transcript abundance during petal development. Only very low levels of F3H transcript were detected, while DFR/FNR transcript was highly abundant. ANS transcript levels were intermediate between these two. The F3H cDNA was shown to encode a functional F3H protein by complementation of the phenotype of an Antirrhinum majus F3H mutant. The recombinant DFR/FNR had activity against both flavanone and dihydroflavonol substrates to a comparable extent. The results suggest a mechanism of 3-deoxyflavonoid biosynthesis in sinningia similar to that reported for Zea mays, in which lack of F3H activity allows action of the DFR/FNR on flavanone substrates and production of flavan-4-ols. These are then likely converted to 3-deoxyanthocyanins through the action of the ANS and subsequent glucosylation.

44 citations

Journal ArticleDOI
TL;DR: MEKC appeared to be a suitable and efficient analytical tool to follow enantiomeric composition of flavanones and the suggestion that interaction of sugar moiety of glycosides with SCh micelles give rise to chiral recognition.
Abstract: Micellar electrokinetic chromatography (MEKC) was applied for enantioseparation of selected flavanones, including naringin, hesperidin, neohesperidin, naringenin, hesperetin, pinostrobin, isosakuranetin, eriodictyol, and homoeriodictyol. gamma-Cyclodextrin (gamma-CD) and sodium cholate (SCh) were used as chiral modifiers inducing enantioselectivity to the background electrolyte. From among many investigated selectors only these two appeared to possess the best enantioselective properties in respect to studied flavanones. The mechanisms of their action are a little different; SCh used above critical micelle point concentration forms chiral micelles itself while gamma-CD is deprived of this property and requires addition of surfactants as, e.g., sodium dodecyl sulfate. It was found that SCh enables separation of flavanone glycosides diastereomers while separation of enantiomers of flavanone aglycones may be achieved with gamma-CD. Consideration of structural relation led to the suggestion that interaction of sugar moiety of glycosides with SCh micelles give rise to chiral recognition. MEKC appeared to be a suitable and efficient analytical tool to follow enantiomeric composition of flavanones.

44 citations


Network Information
Related Topics (5)
Flavonoid
2.4K papers, 130.8K citations
86% related
Flavones
3K papers, 109.7K citations
84% related
Quercetin
7.7K papers, 333.3K citations
84% related
Kaempferol
5.7K papers, 166.1K citations
84% related
Caffeic acid
7.1K papers, 255.4K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
2022145
202165
202049
201944
201848