scispace - formally typeset
Search or ask a question
Topic

Flavin group

About: Flavin group is a research topic. Over the lifetime, 6333 publications have been published within this topic receiving 221835 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The steady state kinetic data are consistent with a branching reaction mechanism previously proposed for glutathione reductase from yeast, and at low GSSG concentrations the rate equation can be approximated by that of a simple ping pong mechanism.

1,755 citations

Journal ArticleDOI
TL;DR: In situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces.
Abstract: Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived.

1,582 citations

Journal ArticleDOI
12 Jan 2001-Science
TL;DR: Results from tryptophan analog feeding experiments and biochemical assays indicate that YUCCA catalyzes hydroxylation of the amino group of tryptamine, a rate-limiting step in tryptophile-dependent auxin biosynthesis.
Abstract: Although auxin is known to regulate many processes in plant development and has been studied for over a century, the mechanisms whereby plants produce it have remained elusive. Here we report the characterization of a dominant Arabidopsis mutant, yucca, which contains elevated levels of free auxin. YUCCA encodes a flavin monooxygenase-like enzyme and belongs to a family that includes at least nine other homologous Arabidopsis genes, a subset of which appears to have redundant functions. Results from tryptophan analog feeding experiments and biochemical assays indicate that YUCCA catalyzes hydroxylation of the amino group of tryptamine, a rate-limiting step in tryptophan-dependent auxin biosynthesis.

1,089 citations

Journal ArticleDOI
10 Oct 2003-Science
TL;DR: By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, the variation of flavin-tyrosine distance over time is observed, suggesting the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.
Abstract: Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

810 citations

Journal ArticleDOI
TL;DR: Flavin mononucleotide and riboflavin are identified for the first time as the extracellular electron shuttles produced by a range of Shewanella species and shown to act as electron Shuttles and to promote anoxic growth coupled to the accelerated reduction of poorly crystalline Fe(III) oxides.
Abstract: Fe(III)-respiring bacteria such as Shewanella species play an important role in the global cycle of iron, manganese, and trace metals and are useful for many biotechnological applications, including microbial fuel cells and the bioremediation of waters and sediments contaminated with organics, metals, and radionuclides. Several alternative electron transfer pathways have been postulated for the reduction of insoluble extracellular subsurface minerals, such as Fe(III) oxides, by Shewanella species. One such potential mechanism involves the secretion of an electron shuttle. Here we identify for the first time flavin mononucleotide (FMN) and riboflavin as the extracellular electron shuttles produced by a range of Shewanella species. FMN secretion was strongly correlated with growth and exceeded riboflavin secretion, which was not exclusively growth associated but was maximal in the stationary phase of batch cultures. Flavin adenine dinucleotide was the predominant intracellular flavin but was not released by live cells. The flavin yields were similar under both aerobic and anaerobic conditions, with total flavin concentrations of 2.9 and 2.1 μmol per gram of cellular protein, respectively, after 24 h and were similar under dissimilatory Fe(III)-reducing conditions and when fumarate was supplied as the sole electron acceptor. The flavins were shown to act as electron shuttles and to promote anoxic growth coupled to the accelerated reduction of poorly crystalline Fe(III) oxides. The implications of flavin secretion by Shewanella cells living at redox boundaries, where these mineral phases can be significant electron acceptors for growth, are discussed.

787 citations


Network Information
Related Topics (5)
Binding site
48.1K papers, 2.5M citations
89% related
Protein subunit
33.2K papers, 1.7M citations
87% related
Amino acid
124.9K papers, 4M citations
87% related
Protein structure
42.3K papers, 3M citations
86% related
Peptide sequence
84.1K papers, 4.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023125
2022230
2021118
2020132
2019137
2018126