scispace - formally typeset
Topic

Flexible electronics

About: Flexible electronics is a(n) research topic. Over the lifetime, 11473 publication(s) have been published within this topic receiving 244656 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
Sukang Bae1, Hyeongkeun Kim1, Youngbin Lee1, Xiangfan Xu2  +13 moreInstitutions (5)
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.

...read more

Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

...read more

7,199 citations


Journal ArticleDOI
16 Mar 2012-Science
TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.

...read more

Abstract: Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.

...read more

3,237 citations


Journal ArticleDOI
TL;DR: A review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches and the performance limits and advantages, when exploited for both digital and analog applications.

...read more

Abstract: The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

...read more

2,038 citations


Journal ArticleDOI
Liangbing Hu1, Han Sun Kim, Jung-Yong Lee1, Peter Peumans1  +1 moreInstitutions (1)
28 Apr 2010-ACS Nano
Abstract: We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could gr...

...read more

1,811 citations


Journal ArticleDOI
Dong Qin1, Younan Xia1, George M. Whitesides2Institutions (2)
01 Mar 2010-Nature Protocols
TL;DR: This protocol provides an introduction to soft lithography—a collection of techniques based on printing, molding and embossing with an elastomeric stamp that has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics.

...read more

Abstract: This protocol provides an introduction to soft lithography--a collection of techniques based on printing, molding and embossing with an elastomeric stamp. Soft lithography provides access to three-dimensional and curved structures, tolerates a wide variety of materials, generates well-defined and controllable surface chemistries, and is generally compatible with biological applications. It is also low in cost, experimentally convenient and has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics. As examples, here we focus on three of the commonly used soft lithographic techniques: (i) microcontact printing of alkanethiols and proteins on gold-coated and glass substrates; (ii) replica molding for fabrication of microfluidic devices in poly(dimethyl siloxane), and of nanostructures in polyurethane or epoxy; and (iii) solvent-assisted micromolding of nanostructures in poly(methyl methacrylate).

...read more

1,686 citations


Network Information
Related Topics (5)
Graphene foam

5.6K papers, 375.6K citations

91% related
Nanogenerator

3.1K papers, 134.1K citations

91% related
Printed electronics

2.8K papers, 95.9K citations

90% related
Nanowire

52K papers, 1.5M citations

90% related
Stretchable electronics

1.6K papers, 97K citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202220
2021611
2020730
2019775
2018754
2017732

Top Attributes

Show by:

Topic's top 5 most impactful authors

John A. Rogers

54 papers, 5.6K citations

Ravinder Dahiya

49 papers, 1.5K citations

Zhenqiang Ma

41 papers, 1.1K citations

Takao Someya

27 papers, 1.9K citations

Niko Munzenrieder

23 papers, 668 citations