scispace - formally typeset
Search or ask a question

Showing papers on "Flexible electronics published in 2018"


Journal ArticleDOI
TL;DR: The method of utilizing an external voltage to break the intrinsic dielectric feature by modifying a traditional electronic absorption device is demonstrated for the first time and has great significance in solving the low-frequency electromagnetic interference issue.
Abstract: Nowadays, low-frequency electromagnetic interference (<2.0 GHz) remains a key core issue that plagues the effective attenuation performance of conventional absorption devices prepared via the component-morphology method (Strategy I). According to theoretical calculations, one fundamental solution is to develop a material that possesses a high e' but lower e″. Thus, it is attempted to control the dielectric values via applying an external electrical field, which inducts changes in the macrostructure toward a performance improvement (Strategy II). A sandwich-structured flexible electronic absorption device is designed using a carbon film electrode to conduct an external current. Simultaneously, an absorption layer that is highly responsive to an external voltage is selected via Strategy I. Relying on the synergistic effects from Strategies I and II, this device demonstrates an absorption value of more than 85% at 1.5-2.0 GHz with an applied voltage of 16 V while reducing the thickness to ≈5 mm. In addition, the device also shows a good absorption property at 25-150 °C. The method of utilizing an external voltage to break the intrinsic dielectric feature by modifying a traditional electronic absorption device is demonstrated for the first time and has great significance in solving the low-frequency electromagnetic interference issue.

657 citations


Journal ArticleDOI
01 Sep 2018-Nature
TL;DR: Self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue are realized and offer a general platform for next-generation self-powered electronics.
Abstract: Next-generation biomedical devices1-9 will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues1-4 and skin5-9. Ultra-flexible organic power sources10-13 that can be wrapped around an object have proven mechanical and thermal stability in long-term operation13, making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes10,12 when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics.

617 citations


Journal ArticleDOI
TL;DR: This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials.
Abstract: Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond.

481 citations



Journal ArticleDOI
TL;DR: In this article, a review of surface modifications of PDMS, inducing properties such as hydrophilicity, electrical conductivity, anti-fouling, energy harvesting, and energy storage (supercapacitors) are discussed.

375 citations


Journal ArticleDOI
TL;DR: A novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomers via UV-light-assisted direct-ink-write printing is reported and it is demonstrated that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices.
Abstract: The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D pr...

348 citations


Journal ArticleDOI
01 Jan 2018
TL;DR: The potential of thin-film transistor technologies in the development of low-cost, flexible integrated circuits for applications beyond flat-panel displays, including the Internet of Things and lightweight wearable electronics is discussed and the concept of a Moore's law for flexible electronics is proposed.
Abstract: The use of thin-film transistors in liquid-crystal display applications was commercialized about 30 years ago. The key advantages of thin-film transistor technologies compared with traditional silicon complementary metal–oxide–semiconductor(CMOS) transistors are their ability to be manufactured on large substrates at low-cost per unit area and at low processing temperatures, which allows them to be directly integrated onto a variety of flexible substrates. Here, I discuss the potential of thin-film transistor technologies in the development of low-cost, flexible integrated circuits for applications beyond flat-panel displays, including the Internet of Things and lightweight wearable electronics. Focusing on the relatively mature thin-film transistor technologies that are available in semiconductor fabrication plants today, the different technologies are evaluated in terms of their potential circuit applications and the implications they will have in the design of integrated circuits, from basic logic gates to more complex digital and analogue systems. I also discuss microprocessors and non-silicon, near-field communication tags that can communicate with smartphones, and I propose the concept of a Moore’s law for flexible electronics. This Perspective discusses the potential of thin-film transistor technologies in the development of low-cost, flexible integrated circuits, evaluating the more mature technologies available today in terms of their potential circuit applications and the implications they will have in the design of integrated circuits.

329 citations


Journal ArticleDOI
Tian Lv1, Mingxian Liu1, Dazhang Zhu1, Lihua Gan1, Tao Chen1 
TL;DR: Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices, and great achievements have been obtained.
Abstract: Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed.

312 citations


Journal ArticleDOI
TL;DR: The self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.
Abstract: Flexible and self-powered photodetectors (PDs) are highly desirable for applications in image sensing, smart building, and optical communications. In this paper, a self-powered and flexible PD based on the methylammonium lead iodide (CH3 NH3 PBI3 ) perovskite is demonstrated. Such a self-powered PD can operate even with irregular motion such as human finger tapping, which enables it to work without a bulky external power source. In addition, with high-quality CH3 NH3 PBI3 perovskite thin film fabricated with solvent engineering, the PD exhibits an impressive detectivity of 1.22 × 1013 Jones. In the self-powered voltage detection mode, it achieves a large responsivity of up to 79.4 V mW-1 cm-2 and a voltage response of up to ≈90%. Moreover, as the PD is made of flexible and transparent polymer films, it can operate under bending and functions at 360 ° of illumination. As a result, the self-powered, flexible, 360 ° omnidirectional perovskite PD, featuring high detectivity and responsivity along with real-world sensing capability, suggests a new direction for next-generation optical communications, sensing, and imaging applications.

305 citations



Journal ArticleDOI
Yan Zhang1, Lina Zhang1, Kang Cui1, Shenguang Ge1, Xin Cheng1, Mei Yan1, Jinghua Yu1, Hong Liu1 
TL;DR: It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based flexible electronics.
Abstract: Over the past several years, a new surge of interest in paper electronics has arisen due to the numerous merits of simple micro/nanostructured substrates. Herein, the latest advances and principal issues in the design and fabrication of paper-based flexible electronics are highlighted. Following an introduction of the fascinating properties of paper matrixes, the construction of paper substrates from diverse functional materials for flexible electronics and their underlying principles are described. Then, notable progress related to the development of versatile electronic devices is discussed. Finally, future opportunities and the remaining challenges are examined. It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based electronic devices.

Journal ArticleDOI
20 Jun 2018-ACS Nano
TL;DR: Roll-to-roll (R2R) gravure printed electrodes are presented that can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise.
Abstract: As recent developments in noninvasive biosensors spearhead the thrust toward personalized health and fitness monitoring, there is a need for high throughput, cost-effective fabrication of flexible sensing components. Toward this goal, we present roll-to-roll (R2R) gravure printed electrodes that are robust under a range of electrochemical sensing applications. We use inks and electrode morphologies designed for electrochemical and mechanical stability, achieving devices with uniform redox kinetics printed on 150 m flexible substrate rolls. We show that these electrodes can be functionalized into consistently high performing sensors for detecting ions, metabolites, heavy metals, and other small molecules in noninvasively accessed biofluids, including sensors for real-time, in situ perspiration monitoring during exercise. This development of robust and versatile R2R gravure printed electrodes represents a key translational step in enabling large-scale, low-cost fabrication of disposable wearable sensors for personalized health monitoring applications.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that two-dimensional MXenes (e.g., titanium carbide Ti3C2Tx) are a family of electrically conducting materials that are triboelectrically more negative than polytetrafluorethylene, or Teflon.


Journal ArticleDOI
14 Mar 2018
TL;DR: This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer properties such as the electrical, thermal, optical and mechanical properties, stress modelling, and packaging techniques.
Abstract: Flexible electronics has significantly advanced over the last few years, as devices and circuits from nanoscale structures to printed thin films have started to appear. Simultaneously, the demand for high-performance electronics has also increased because flexible and compact integrated circuits are needed to obtain fully flexible electronic systems. It is challenging to obtain flexible and compact integrated circuits as the silicon based CMOS electronics, which is currently the industry standard for high-performance, is planar and the brittle nature of silicon makes bendability difficult. For this reason, the ultra-thin chips from silicon is gaining interest. This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer. The comprehensive study presented here includes analysis of ultra-thin chips properties such as the electrical, thermal, optical and mechanical properties, stress modelling, and packaging techniques. The underpinning advances in areas such as sensing, computing, data storage, and energy have been discussed along with several emerging applications (e.g., wearable systems, m-Health, smart cities and Internet of Things etc.) they will enable. This paper is targeted to the readers working in the field of integrated circuits on thin and bendable silicon; but it can be of broad interest to everyone working in the field of flexible electronics.

Journal ArticleDOI
TL;DR: In this paper, a highly concentrated ink containing two-dimensional δ-MnO2 nanosheets with an average lateral size of 89"nm and around 1"n thickness was used.

Journal ArticleDOI
TL;DR: A facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity in a low-pressure regime, an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks.
Abstract: Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa–1) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pres...

Journal ArticleDOI
TL;DR: In this article, a 39.0 cm2 all-flexible lithium-ion battery with high gravimetric energy density (314 W h kg−1), excellent flexibility, and good storage performance is presented.
Abstract: Flexible lithium-ion batteries (FLIBs) potentially offer lithium-ion battery energy density required for the production of flexible electronics. The design of FLIBs depends not only on the electrode materials but also on the entire weight of the battery device. However, low capacity contribution from the flexible substrate and poor interactions between the flexible substrate and active electrode materials lead to low capacity, representing low energy density. Herein, we concentrated on designing a flexible substrate (carbon cloth, CC), improving its conductivity and surface area to deliver high capacity, and further coating porous NiCo2O4 nanowires on it to achieve a monolithic anode for high-gravimetric energy density FLIBs. Theoretical and in situ analyses were used to investigate Li-ion pathways and capacity contribution of the flexible substrate, respectively. In this regard, a 39.0 cm2 all-flexible lithium-ion battery (with an entire weight of 281 mg) with high gravimetric energy density (314 W h kg−1), excellent flexibility, and good storage performance is attained, and it exhibits potential application for future flexible energy storage devices.

Journal ArticleDOI
TL;DR: A series of ionic conducting elastomers (ICE) are introduced by salt in polymer strategy, which show good elasticity and transparency and simultaneously high conductivity, and provide possibilities for flexible electronics and soft machines.
Abstract: Traditional elastomers are mostly dielectrics; existing conductive elastomers are conductive composites with electric conductors. Herein, we introduce a series of ionic conducting elastomers (ICE) by salt in polymer strategy. The ICEs possess good stretchability, transparency and ionic conductivity. Moreover, the ICEs exhibit very high stability in air, under high temperature and voltage, with excellent adhesion properties and no corrosive effects to metal electrodes. Touch sensors are fabricated using these ICEs—impedance spectra and impedance complex plane are tested and analyzed to clarify different stimulus of the touch sensors. These ICEs provide possibilities for flexible electronics and soft machines.

Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: In this article, a cyanotype is successfully employed as a photographic printing technique for the fabrication of a low-cost, scalable, and flexible cathode for rechargeable potassium-ion batteries.

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of conductive-hydrogel-based flexible electronics, ranging from conductive hydrogels synthesis to several important flexible devices applications, including touch panels, sensors and energy storage.
Abstract: Flexible conductive materials have gained considerable research interest in recent years because of their potential applications in flexible energy storage devices, sensors, touch panels, electronic skins, etc. With excellent flexibility, outstanding electric properties and tunable mechanical properties, conductive hydrogels as conductive materials offer plentiful insights and opportunities for flexible electronic devices. Numerous synthetic strategies have been developed to obtain various conductive hydrogels, and high-performance flexible electronic devices based on these conductive hydrogels have been realized. This review provides a comprehensive overview of conductive-hydrogel-based flexible electronics, ranging from conductive hydrogels synthesis to several important flexible devices applications, including touch panels, sensors and energy storage. Finally, we provide new future research directions and perspectives for conductive-hydrogel-based flexible and portable electronic devices.

Journal ArticleDOI
TL;DR: Graphene is the first 2D crystal ever isolated by mankind as discussed by the authors, and it consists of a single graphite layer, and its exceptional properties enable applications ranging from energy harvesting and electronic skin to reinforced plastic materials.
Abstract: Graphene is the first 2D crystal ever isolated by mankind. It consists of a single graphite layer, and its exceptional properties are revolutionizing material science. However, there is still a lack of convenient mass-production methods to obtain defect-free monolayer graphene. In contrast, graphene nanoplatelets, hybrids between graphene and graphite, are already industrially available. Such nanomaterials are attractive, considering their planar structure, light weight, high aspect ratio, electrical conductivity, low cost, and mechanical toughness. These diverse features enable applications ranging from energy harvesting and electronic skin to reinforced plastic materials. This review presents progress in composite materials with graphene nanoplatelets applied, among others, in the field of flexible electronics and motion and structural sensing. Particular emphasis is given to applications such as antennas, flexible electrodes for energy devices, and strain sensors. A separate discussion is included on advanced biodegradable materials reinforced with graphene nanoplatelets. A discussion of the necessary steps for the further spread of graphene nanoplatelets is provided for each revised field.

Journal ArticleDOI
TL;DR: The state-of-the-art of the fundamental formulation of graphene inks and the current printing techniques used for inks deposition are discussed, followed by recent practical applications for printed flexible electronics.

Journal ArticleDOI
TL;DR: In this paper, a two-step screen-printing process was proposed to fabricate flexible coplanar asymmetric microscale hybrid device (MHD) with a higher energy density compared to carbon-based microsupercapacitors.

Journal ArticleDOI
TL;DR: Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWC NTs into near-ohmic ones, which significantly improves the conductivity of the transparentSWCNT network.
Abstract: Single-wall carbon nanotubes (SWCNTs) are ideal for fabricating transparent conductive films because of their small diameter, good optical and electrical properties, and excellent flexibility. However, a high intertube Schottky junction resistance, together with the existence of aggregated bundles of SWCNTs, leads to a degraded optoelectronic performance of the films. We report a network of isolated SWCNTs prepared by an injection floating catalyst chemical vapor deposition method, in which crossed SWCNTs are welded together by graphitic carbon. Pristine SWCNT films show a record low sheet resistance of 41 ohm □−1 at 90% transmittance for 550-nm light. After HNO3 treatment, the sheet resistance further decreases to 25 ohm □−1. Organic light-emitting diodes using this SWCNT film as anodes demonstrate a low turn-on voltage of 2.5 V, a high current efficiency of 75 cd A−1, and excellent flexibility. Investigation of isolated SWCNT-based field-effect transistors shows that the carbon-welded joints convert the Schottky contacts between metallic and semiconducting SWCNTs into near-ohmic ones, which significantly improves the conductivity of the transparent SWCNT network. Our work provides a new avenue of assembling individual SWCNTs into macroscopic thin films, which demonstrate great potential for use as transparent electrodes in various flexible electronics.

Journal ArticleDOI
02 May 2018-Sensors
TL;DR: The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.
Abstract: Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

Journal ArticleDOI
Luca Nela1, Jianshi Tang1, Qing Cao1, George S. Tulevski1, Shu-Jen Han1 
TL;DR: A large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs) that exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area.
Abstract: Artificial “electronic skin” is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-perfor...

Journal ArticleDOI
01 Oct 2018

Journal ArticleDOI
TL;DR: A 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive-manufacturing technique, and the LIG foams show good electrical conductivity and mechanical strength, as well as viability in various energy storage and flexible electronic sensor applications.
Abstract: Laser-induced graphene (LIG), a graphene structure synthesized by a one-step process through laser treatment of commercial polyimide (PI) film in an ambient atmosphere, has been shown to be a versatile material in applications ranging from energy storage to water treatment. However, the process as developed produces only a 2D product on the PI substrate. Here, a 3D LIG foam printing process is developed on the basis of laminated object manufacturing, a widely used additive-manufacturing technique. A subtractive laser-milling process to yield further refinements to the 3D structures is also developed and shown here. By combining both techniques, various 3D graphene objects are printed. The LIG foams show good electrical conductivity and mechanical strength, as well as viability in various energy storage and flexible electronic sensor applications.