scispace - formally typeset
Search or ask a question
Topic

Flexible electronics

About: Flexible electronics is a research topic. Over the lifetime, 11473 publications have been published within this topic receiving 244656 citations.


Papers
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature, which is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that ofthin- film transistors based on thermally annealed materials.
Abstract: A method for annealing metal-oxide semiconductor films with deep-ultraviolet light yields thin-film transistors with performance comparable to that of thermally annealed devices, and widens the range of substrates on which such devices can be fabricated. Solution-processable metal-oxide semiconductors are attractive materials for low-cost, flexible electronics, but the need to anneal the deposited materials at relatively high temperatures limits the range of substrates on which such devices can be fabricated. Now Yong-Hoon Kim and colleagues demonstrate that irradiating the solution-cast films with deep ultraviolet light can obviate the need for an annealing step. In this system, photochemical activation serves essentially the same purpose as annealing, and the resulting semiconducting materials have device performance levels comparable to those produced using the high-temperature techniques. Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors1,2,3,4,5,6,7. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates8,9,10,11,12,13. But metal-oxide formation by the sol–gel route requires an annealing step at relatively high temperature2,14,15,16,17,18,19, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol–gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm2 V−1 s−1 (with an Al2O3 gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.

956 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of various printing technologies, commonly used substrates and electronic materials is presented, including solution/dry printing and contact/noncontact printing technologies on the basis of technological, materials, and process-related developments in the field.
Abstract: Printing sensors and electronics over flexible substrates are an area of significant interest due to low-cost fabrication and possibility of obtaining multifunctional electronics over large areas. Over the years, a number of printing technologies have been developed to pattern a wide range of electronic materials on diverse substrates. As further expansion of printed technologies is expected in future for sensors and electronics, it is opportune to review the common features, the complementarities, and the challenges associated with various printing technologies. This paper presents a comprehensive review of various printing technologies, commonly used substrates and electronic materials. Various solution/dry printing and contact/noncontact printing technologies have been assessed on the basis of technological, materials, and process-related developments in the field. Critical challenges in various printing techniques and potential research directions have been highlighted. Possibilities of merging various printing methodologies have been explored to extend the lab developed standalone systems to high-speed roll-to-roll production lines for system level integration.

951 citations

Journal ArticleDOI
TL;DR: H hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity, excellent cycling ability, and superior electrochemical performances.
Abstract: Flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Herein, hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity of 1300–1400 mAh g–1 and excellent cycling ability even after 160 cycles with a capacity of 1200 mAh g–1. Highly flexible full batteries were also fabricated, exhibiting high flexibility, excellent electrical stability, and superior electrochemical performances.

946 citations

Journal ArticleDOI
13 May 2012
TL;DR: The current status of flexible electronics is reviewed and the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks is predicted.
Abstract: Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks.

881 citations

Journal ArticleDOI
TL;DR: An approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films and may find use in the fabrication of high-performance, large-area printed electronics.
Abstract: Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach—termed fluid-enhanced crystal engineering (FLUENCE)—that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V−1 s−1 and 11 cm2 V−1 s−1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. Solution printing of organic semiconductors could in principle be scaled to industrial needs, yet attaining aligned single-crystals directly with this method has been challenging. By using a micropillar-patterned printing blade designed to enhance the control of crystal nucleation and growth, thin films of macroscopic, highly aligned single crystals of organic semiconductors can now be fabricated.

876 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
88% related
Graphene
144.5K papers, 4.9M citations
88% related
Silicon
196K papers, 3M citations
85% related
Thin film
275.5K papers, 4.5M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023110
2022277
2021613
2020730
2019775
2018754