scispace - formally typeset
Search or ask a question
Topic

Flexural rigidity

About: Flexural rigidity is a research topic. Over the lifetime, 3829 publications have been published within this topic receiving 56780 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of a steel riser repaired with fiber reinforced polymer composite (FRPC) subjected to bending load was evaluated and a finite element (FE) analysis was used to simulate the load-strain behavior of the repaired system.

22 citations

Journal ArticleDOI
TL;DR: It is shown that both transition curvatures decrease with increasing rod stiffness, which is the key factor determining rupture for rod curvature with the opposite sign to the vesicle curvature.
Abstract: The assembly of curved protein rods on fluid membranes is studied using implicit-solvent meshless membrane simulations. As the rod curvature increases, the rods on a membrane tube assemble along the azimuthal direction first and subsequently along the longitudinal direction. Here, we show that both transition curvatures decrease with increasing rod stiffness. For comparison, curvature-inducing isotropic inclusions are also simulated. When the isotropic inclusions have the same bending rigidity as the other membrane regions, the inclusions are uniformly distributed on the membrane tubes and vesicles even for large spontaneous curvature of the inclusions. However, the isotropic inclusions with much larger bending rigidity induce shape deformation and are concentrated on the region of a preferred curvature. For high rod density, high rod stiffness, and/or low line tension of the membrane edge, the rod assembly induces vesicle rupture, resulting in the formation of a high-genus vesicle. A gradual change in the curvature suppresses this rupture. Hence, large stress, compared to the edge tension, induced by the rod assembly is the key factor determining rupture. For rod curvature with the opposite sign to the vesicle curvature, membrane rupture induces inversion of the membrane, leading to division into multiple vesicles as well as formation of a high-genus vesicle.

22 citations

Journal ArticleDOI
TL;DR: In this paper, an approximate analytical solution based on a variational approach is presented for stresses in two cross-ply laminates, [90 m /0 n ] s and [0 m /90 n ], with matrix cracks in the 90° layers, subjected to bending.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a static method for axial load identification of slender prismatic beams with uncertain length and unknown boundary conditions is presented, which is typical of struts and ties of truss structures or tie-rods of arches and vaults.

22 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid analytical/finite element method (HAFEM) is described that uses a finite element approximation in the thickness direction, while analytical solutions are assumed in the plane directions.
Abstract: For the purpose of identifying the acoustic characteristics of honeycomb sandwich panels, finite element method (FEM), combined with boundary element method (BEM), has been widely used. However, the latter approach is not always applicable to high frequency analyses since it requires a large number of FEM/BEM meshes. In order to reduce computational resources and modeling times, a hybrid analytical/finite element method (HAFEM) is described that uses a finite element approximation in the thickness direction, while analytical solutions are assumed in the plane directions. Thus, it makes it possible to use a small number of finite elements, even for high frequency analyses. By using the HAFEM, the wave transmission, propagation, and radiation characteristics of the honeycomb sandwich panels are investigated. The proposed HAFEM procedure is validated by comparing the predicted transmission loss (TL) results to the measured ones. Through the use of the HAFEM model of a honeycomb sandwich panel, it is shown that the structural responses of the panel converge asymptotically to flexural waves in the low audible frequency region, core shear waves in the high audible to ultrasonic frequency region, and skin flexural waves in the high ultrasonic frequency region. Coincident frequencies occur at the transition region from the flexural to core shear wave behaviors. From the TL sensitivities of various panel design parameters, the most dominant design parameters contributing to the TL results are determined as a function of frequency. In order to improve the acoustic performance of the honeycomb sandwich panel while satisfying weight and strength requirements, a new double core honeycomb sandwich panel is designed to have the same mass per unit area as the baseline single core panel but have a larger equivalent flexural stiffness than that of the baseline panel.

22 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
78% related
Finite element method
178.6K papers, 3M citations
77% related
Stress (mechanics)
69.5K papers, 1.1M citations
77% related
Fracture mechanics
58.3K papers, 1.3M citations
74% related
Composite number
103.4K papers, 1.2M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022201
2021171
2020163
2019178
2018146