scispace - formally typeset
Search or ask a question
Topic

Flexural strength

About: Flexural strength is a research topic. Over the lifetime, 52123 publications have been published within this topic receiving 846504 citations. The topic is also known as: bending strength & modulus of rupture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of concentration of NaOH solution on the mechanical and chemical properties of the metakaolinite-based geopolymer was investigated by means of X-ray diffraction, scanning electron microscopy (SEM) and infrared spectrometry (IR).

414 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete, which is at variance with both existing models and formulations based on the law of mixtures.
Abstract: This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compres- sive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson's ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa, moderately high strength 65 MPa, and high-strength concrete 85 MPa, and the volume fraction of the fiber Vf=0.0, 0.5, 1.0, and 1.5%. The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures. 85 MPa with various fiber dosages Vf=0, 0.5, 1.0, and 1.5%. An empirical relationship for various mechanical properties of SFRC has been proposed. The proposed model attempts to bring out the significance of fiber matrix interaction in all the strength properties. This study reports the experimental results of the strength properties of SFRC, namely, cube and cylinder compressive strength, split tensile strength, modulus of rupture, modulus of elasticity, Poisson's ratio, and strain corresponding to peak com- pressive stress. Empirical relationships were developed for vari- ous strength properties based on the regression analysis of the 60 test data. It is expected that these proposed models would be helpful in assessing the strength properties of fiber-reinforced concrete based on the matrix strength and fiber-RI.

410 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of processing technique on the mechanical behaviour of virgin ABS was investigated in terms of varying raster angle and gap to further explore the potential of this technique.

407 citations

Journal ArticleDOI
TL;DR: In this paper, the surface of sisal fibres has been modified by mercerization and silane treatment to improve adhesion characteristics and moisture resistance, which is most effective in reducing moisture uptake of fibres in humid environments.

405 citations

Journal ArticleDOI
TL;DR: In this paper, a nanometer-scale bending test for a single crystal silicon (Si) fixed beam using an atomic force microscope (AFM) was described. But the authors focused on revealing the size effect on the mechanical property of Si beams ranging from a nano-to millimeter scale.
Abstract: This paper describes a nanometer-scale bending test for a single crystal silicon (Si) fixed beam using an atomic force microscope (AFM). This research focuses on revealing the size effect on the mechanical property of Si beams ranging from a nano- to millimeter scale. Nanometer-scale Si beams, with widths from 200 to 800 nm and a thickness of 255 nm, were fabricated on an Si diaphragm by means of field-enhanced anodization using AFM and anisotropic wet etching. The efficient condition of the field-enhanced anodization could be obtained by changing the bias voltage and the scanning speed of the cantilever. Bending tests for micro- and millimeter-scale Si beams fabricated by a photolithography technique were also carried out using an ultraprecision hardness tester and scratch tester, respectively. Comparisons of Young's modulus and bending strength, of Si among the nano-, micro-, and millimeter scales showed that the specimen size did not have an influence on the Young's modulus in the [110] direction, whereas it produced a large effect on the bending strength. Observations of the fractured surface and calculations of the clack length from Griffith's theory made it clear that the maximum peak-to-valley distance of specimen surface caused the size effect on the bending strength.

404 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
92% related
Ceramic
155.2K papers, 1.6M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,785
20226,968
20213,940
20203,386
20193,138