scispace - formally typeset
Search or ask a question
Topic

Flexural strength

About: Flexural strength is a research topic. Over the lifetime, 52123 publications have been published within this topic receiving 846504 citations. The topic is also known as: bending strength & modulus of rupture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the chemical and physical properties of the MWCNTs were analyzed by means of EDX, TGA, SEM, and Raman analysis, and the phase composition of the composites were characterized by using an X-ray diffractometer and scanning electron microscope.

398 citations

Journal ArticleDOI
TL;DR: In this article, the influence of B 4 C on the mechanical and Tribological behavior of Al 7075 composites is identified, and the test results showed increasing hardness of composites compared with the base alloy because of the presence of the increased ceramic phase.
Abstract: In the present investigation, the influence of B 4 C on the mechanical and Tribological behavior of Al 7075 composites is identified. Al 7075 particle reinforced composites were produced through casting, K 2 TiF 6 added as the flux, to overcome the wetting problem between B 4 C and liquid aluminium metal. The aluminium B 4 C composites thus produced were subsequently subjected to T6 heat treatment. The samples of Al 7075 composites were tested for hardness, tensile, compression, flexural strengths and wear behavior. The test results showed increasing hardness of composites compared with the base alloy because of the presence of the increased ceramic phase. The wear resistance of the composites increased with increasing content of B 4 C particles, and the wear rate was significantly less for the composite material compared to the matrix alloy. A mechanically mixed layer containing oxygen and iron was observed on the surface, and this acted as an effective insulation layer preventing metal to metal contact. The coefficient of friction decreased with increased B 4 C content and reached its minimum at 10 vol% B 4 C.

394 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of filler concentration on the mechanical properties of wood-fiber filled composites, prepared by using m-TMI-g-PP as the compatibilizer, was investigated.
Abstract: Natural fibers are increasingly being used as reinforcement in commercial thermoplastics due to their low cost, high specific properties and renewable nature. While the maleic anhydride modified polypropylene (MAPP) is most commonly used as compatibilizer to improve interfacial adhesion between hydrophilic wood–fibers and hydrophobic polypropylene, in this study, a novel compatibilizer (m-TMI-g- PP) with isocyanate functional group was synthesized by grafting m-isopropenyl-\alpha,\alpha-dimethylbenzyl-isocyanate (m-TMI) onto isotactic polypropylene (PP) in a twin screw extruder. The effect of filler concentration on the mechanical properties of wood–fiber filled composites, prepared by using m-TMI-g-PP as the compatibilizer, was investigated. The addition of the compatibilizer resulted in greater reinforcement of composites, as indicated by the improvement in mechanical properties. Tensile strength of composites so prepared increased by almost 45%, whereas 85% increase in flexural properties was observed. However the addition of wood–fibers resulted in a decrease in elongation at break and impact strength of the composites.

394 citations

Journal ArticleDOI
TL;DR: The use of silicon nitride as a sintering aid (5 vol.%) greatly improves the powder sinterability of zirconium diboride, in comparison to additive free ZrB2 as discussed by the authors.
Abstract: The use of silicon nitride as a sintering aid (5 vol.%) greatly improves the powder sinterability of zirconium diboride, in comparison to additive free ZrB2. Nearly full dense monolithic material is obtained by hot pressing at 1700 °C. The microstructure consists of fine regular ZrB2 grains and of various secondary grain boundary phases (e.g. BN, t-ZrO2, BN-rich glassy phase), mainly located at triple points. The addition of 20 vol.% of silicon carbide as a reinforcing particulate phase to the ZrB2+5vol.%Si3N4 powder mixture slows down the densification rate of ZrB2, therefore a higher hot pressing temperature (i.e. 1870 °C) is necessary to achieve nearly full density. Further addition of oxide additives (1vol.%Al2O3+0.5vol.%Y2O3) to the ZrB2–20vol.%SiC–5vol.%Si3N4 system enables the production of near fully dense composites at lower hot pressing temperature (1760 °C). The presence of SiC particles in both the ZrB2-based composites effectively improves strength, hardness and toughness, compared to monolithic zirconium diboride. Some mechanical properties are very interesting: flexural strength up to 700 and 600 MPa are measured at room temperature and 1000 °C, respectively. The properties are discussed in terms of the microstructural features.

391 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the mechanical properties of a kaolinite/fiber soil composite by a series of laboratory unconfined compression, splitting tensile strength, three-point bending, and hydraulic conductivity tests.
Abstract: The mechanical properties of a kaolinite/fiber soil composite were evaluated by a series of laboratory unconfined‐compression, splitting‐tension, three‐point‐bending, and hydraulic‐conductivity tests. The inclusion of randomly distributed fibers significantly increased the peak compressive strength, ductility, splitting tensile strength, and flexural toughness of kaolinite clay. The increase in strength and toughness was a function of fiber length and content, and the water content of the composite. Increasing fiber content increased the compressive and tensile strength, and the toughness index of kaolinite clay, with the effect being more pronounced at lower water contents. The contribution of fibers to peak compressive and tensile strengths were reduced, and ductility increased, with increasing fiber length. The fiber inclusion increased the hydraulic conductivity of the composite and the increase was more pronounced at higher fiber contents. Despite the increase, the hydraulic conductivity of the compo...

391 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
92% related
Ceramic
155.2K papers, 1.6M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,785
20226,968
20213,940
20203,386
20193,138