scispace - formally typeset
Search or ask a question
Topic

Flexural strength

About: Flexural strength is a research topic. Over the lifetime, 52123 publications have been published within this topic receiving 846504 citations. The topic is also known as: bending strength & modulus of rupture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the structural behavior of reinforced concrete beams strengthened with adhesively bonded fiber-reinforced plastics (FRP) is presented, and it is suggested that the detachment of bonded external plates from the concrete, at ultimate loads, is governed by a limiting principal stress value at the concrete/external plate interface.
Abstract: The structural behavior of reinforced concrete beams strengthened with adhesively bonded fiber-reinforced plastics (FRP) is presented. The experimental work included flexural testing of 2.3-m-long concrete beams with bonded external reinforcements. The test variables included the amount of conventional (internal) reinforcement and also the type and amount of external reinforcement. For comparison, some of the beams were strengthened with bonded steel plates. Theoretical analyses included 2D nonlinear finite-element modeling incorporating a “damage” material model for concrete. In general there were reasonably good correlations between the experimental results and nonlinear finite-element models. It is suggested that the detachment of bonded external plates from the concrete, at ultimate loads, is governed by a limiting principal stress value at the concrete/external plate interface.

358 citations

Journal ArticleDOI
29 Jan 1981-Nature
TL;DR: In this paper, the authors demonstrate that the commonly observed flexural weakness of hydraulic cements is due to the presence of large voids which are largely undetected by conventional methods of pore analysis such as gas adsorption and mercury porosimetry.
Abstract: A curious feature of hydraulic cements, such as those based on calcium silicate, calcium aluminate and calcium sulphate, is that they exhibit similarly low flexural strengths, typically between 3 and 10 MPa, despite their differing chemical composition, varying degrees of hydration and contrasting setting mechanisms1–3. Because of these low strength values, unreinforced cements are never used in flexure or tension, and studies of cement strength are usually confined to compression. Those few studies which have considered flexural or tensile failure have concluded that hydraulic cements have an intrinsic maximum tensile strength of about 20 MPa4,5. Here we demonstrate that the commonly observed flexural weakness of cement is due to the presence of large voids which are largely undetected by conventional methods of pore analysis such as gas adsorption and mercury porosimetry. The removal of such macro-defects results in flex strengths up to 70 MPa, despite the large volume of gel pores remaining in the material. These strength figures, comparable with those of sintered ceramics, have been achieved without the use of elevated pressures or temperatures, and without fibrous reinforcement.

358 citations

Journal ArticleDOI
TL;DR: The new-generation polymer-based materials tested in this study exhibited significantly higher flexural strength and modulus of resilience, along with lower flexural modulus values compared with the tested ceramic or hybrid materials.
Abstract: Statement of problem The recent development of polymer-based computer-aided design and computer-aided manufactured (CAD/CAM) milling blocks and the limited availability of independent studies on these materials make it pertinent to evaluate their properties and identify potential strengths and limitations. Purpose The purpose of this in vitro study was to determine and compare mechanical properties (flexural strength, flexural modulus, modulus of resilience) and compare the margin edge quality of recently introduced polymer-based CAD/CAM materials with some of their commercially available composite resin and ceramic counterparts. Material and methods The materials studied were Lava Ultimate Restorative (LVU; 3M ESPE), Enamic (ENA; Vita Zahnfabrik), Cerasmart (CES; GC Dental Products), IPS Empress CAD (EMP; Ivoclar Vivadent AG), Vitablocs Mark II (VM2; Vita Zahnfabrik), and Paradigm MZ100 Block (MZ1; 3M ESPE). Polished 4×1×13.5 mm bars (n=25) were prepared from standard-sized milling blocks of each tested material. The bars were subjected to a 3-point flexural test on a 10-mm span with a crosshead speed of 0.5 mm/min. In addition, 42 conventional monolithic crowns (7 per material) were milled. Margin edge quality was observed by means of macrophotography and optical microscopy, providing a qualitative visual assessment and a measurement of existing roughness. The results were analyzed by ANOVA followed by the Tukey HSD test (α=.05). Results The mean flexural strength of the tested materials ranged from 105 ±9 MPa (VM2) to 219 ±20 MPa (CES). The mean flexural modulus ranged from 8 ±0.25 GPa (CES) to 32 ±1.9 GPa (EMP). The mean modulus of resilience ranged from 0.21 ±0.02 MPa (VM2) to 3.07 ±0.45 MPa (CES). The qualitative assessment of margin edge roughness revealed visible differences among the tested materials, with mean roughness measurements ranging from 60 ±16 μm (CES) to 190 ±15 μm (EMP). The material factor had a significant effect on the mean flexural strength ( P P P P Conclusions The new-generation polymer-based materials tested in this study exhibited significantly higher flexural strength and modulus of resilience, along with lower flexural modulus values compared with the tested ceramic or hybrid materials. Crowns milled from the new resin-based blocks seemed to exhibit visibly smoother margins compared with the ceramic materials studied.

357 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of technological variables on pore structure and mechanical properties of lime-based mortars was discussed, including the influence of curing time, binder-aggregate (B/Ag) ratio, aggregate attributes and porosity.

357 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D printing process for continuous fiber reinforced thermoplastic composites (CFRTPCs) is proposed to realize the low-cost rapid fabrication of complicated composite components.
Abstract: Purpose Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the manufacturing boundedness of complex constructions and the inability of special fiber alignment. The purpose of this paper is to put forward a novel three-dimensional (3D) printing process for CFRTPCs to realize the low-cost rapid fabrication of complicated composite components. Design/methodology/approach For this purpose, the mechanism of the proposed process, which consists of the thermoplastic polymer melting, the continuous fiber hot-dipping and the impregnated composites extruding, was investigated. A 3D printing equipment for CFRTPCs with a novel composite extrusion head was developed, and some composite samples have been fabricated for several mechanical tests. Moreover, the interface performance was clarified with scanning electron microscopy images. Findings The results showed that the flexural strength and the tensile strength of these 10 Wt.% continuous carbon fiber (CCF)/acrylonitrile-butadiene-styrene (ABS) specimens were improved to 127 and 147 MPa, respectively, far greater than the one of ABS parts and close to the one of CCF/ABS (injection molding) with the same fiber content. Moreover, these test results also exposed the very low interlaminar shear strength (only 2.81 MPa) and the inferior interface performance. These results were explained by the weak meso/micro/nano scale interfaces in the 3D printed composite parts. Originality/value The 3D printing process for CFRTPCs with its controlled capabilities for the orientation and distribution of fiber has great potential for manufacturing of load-bearing composite parts in the industrial circle.

353 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
92% related
Ceramic
155.2K papers, 1.6M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,785
20226,968
20213,940
20203,386
20193,138