scispace - formally typeset
Search or ask a question
Topic

Flexural strength

About: Flexural strength is a research topic. Over the lifetime, 52123 publications have been published within this topic receiving 846504 citations. The topic is also known as: bending strength & modulus of rupture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of fly-ash-based geopolymer concrete (GPC) were studied using regression analysis to identify tendencies and correlations within the mechanical properties of GPC.
Abstract: The mechanical properties of fly-ash-based geopolymer concrete (GPC) were studied. Experimentally measured values of the static elastic modulus, Poisson’s ratio, compressive strength, and flexural strength of GPC specimens made from 25 fly ash (FA) stockpiles from different sources were recorded and analyzed. The results were studied using regression analysis to identify tendencies and correlations within the mechanical properties of GPC. It was found that the mechanical behavior of GPC is similar to that of ordinary portland cement (OPC) concrete, suggesting that equations, akin to those given by ACI 318-08, could be applied for GPC to determine its flexural strength and static elastic modulus. The validity of an equation to determine the density of GPC as a function of FA fineness was also put forward.

287 citations

Journal ArticleDOI
TL;DR: In this article, a large test database containing the test results of 59 beams reported to have failed by plate end debonding is presented, and statistical and graphical comparisons between test results and the predictions of the debonding strength models are next presented.

287 citations

Journal ArticleDOI
TL;DR: In this paper, the isolated contribution of silica fume on the tensile strengths of high performance concrete (HPC) is investigated. But the results indicate that the optimum replacement percentage is not a constant one but depends on the water-cementitious material (w/cm) ratio of the mix.

286 citations

Journal ArticleDOI
TL;DR: In this article, the influence of fiber content on mechanical and thermal properties of TPU composites has been studied, where different fiber loadings were used to obtain tensile, flexural, impact, hardness and abrasion resistance.

285 citations

Journal ArticleDOI
TL;DR: In this article, a degree of hydration-based description for the compressive strength, Young's modulus, uniaxial tensile strength, splitting tensile and flexural tensile strengths, Poisson's ratio and peak strain are all worked out based on an extensive experimental program on hardening concrete elements.
Abstract: For the evaluation of the risk of thermal cracking in hardening massive concrete elements, knowledge of the development of strength and deformability of early-age concrete is extremely important. Based on an extensive experimental research program on hardening concrete elements, a degree of hydration-based description for the compressive strength, Young's modulus, the uniaxial tensile strength, the splitting tensile strength, the flexural tensile strength, Poisson's ratio and the peak strain are all worked out. An extension of the formulation of Sargin for the stress-strain relation for short-term compressive loading leads to a degree of hydration-based stress-strain relation for hardening concrete. Good agreement with experimental results is reported.

284 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
92% related
Ceramic
155.2K papers, 1.6M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,785
20226,968
20213,940
20203,386
20193,138