scispace - formally typeset
Search or ask a question
Topic

Flexural strength

About: Flexural strength is a research topic. Over the lifetime, 52123 publications have been published within this topic receiving 846504 citations. The topic is also known as: bending strength & modulus of rupture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of the variation in chemical composition and tensile strength of coir, sisal, jute and Hibiscus cannabinus fibres, when they are subjected to alternate wetting and drying and continuous immersion for 60 days in three mediums (water, saturated lime and sodium hydroxide) were determined after 28 days of normal curing.
Abstract: This paper presents the results of the variation in chemical composition and tensile strength of coir, sisal, jute and Hibiscus cannabinus fibres, when they are subjected to alternate wetting and drying and continuous immersion for 60 days in three mediums (water, saturated lime and sodium hydroxide). Compressive and flexural strengths of cement mortar (1:3) specimens reinforced with dry and corroded fibres were determined after 28 days of normal curing. From the results it is observed that there is substantial reduction in the salient chemical composition of all the four fibres, after exposure in the various mediums. Coir fibres are found to retain higher percentages of their initial strength than all other fibres, after the specified period of exposure in the various mediums. The compressive and flexural strengths of all natural fibre reinforced mortar specimens using corroded fibres are less than the strength of the reference mortar (i.e. without fibres) and fibre reinforced mortar specimens reinforced with dry natural fibres.

235 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of polypropylene fibers on LECA Lightweight Self-Compacting Concrete (LLSCC) performance at its fresh condition as well as its mechanical properties at the hardened condition was analyzed.

234 citations

Journal ArticleDOI
TL;DR: In this article, an experimental program was developed based on the statistical method of fractional factors design, and the results indicated that the compressive and flexural properties can be modelled using a simple empirical linear expression based on statistical analysis and regression.
Abstract: This research is concerned with the mechanical and physical properties of hemp fibre reinforced concrete (HFRC). An experimental program was developed based on the statistical method of fractional factors design. The variables for the experimental study were: (1) mixing method; (2) fibre content by weight; (3) aggregate size; and (4) fibre length. Their effects on the compressive and flexural performance of HFRC composites were investigated. The specific gravity and water absorption ratio of HFRC were also studied. The results indicate that the compressive and flexural properties can be modelled using a simple empirical linear expression based on statistical analysis and regression, and that hemp fibre content (by weight) is the critical factor affecting the compressive and flexural properties of HFRC.

234 citations

Journal ArticleDOI
TL;DR: The new short fiber composite differed significantly in its physical properties compared to other materials tested, which suggests that the latter could be used in high-stress bearing areas.

233 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used finite element models to predict material response in internally heated nozzle tests, and the results of the modeling suggest that HfB2 should survive the high thermal stresses generated during the nozzle test primarily because of its superior thermal conductivity.
Abstract: The thermal conductivity, thermal expansion, Young's Modulus, flexural strength, and brittle-plastic deformation transition temperature were determined for HfB2, HfC0.98, HfC0.67, and HfN0.92 ceramics. The mechanical behavior of αHf(N) solid solutions was also studied. The thermal conductivity of modified HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2.5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0.98 to 1100°C for HfC0.67 ceramics. The transition temperature of HfB2 was 1100°C. Pure HfB2 was found to have a strength of 340 MPa in 4 point bending, that was constant from room temperature to 1600°C, while a HfB2 + 10% HfCx had a higher room temperature bend strength of 440 MPa, but that dropped to 200 MPa at 1600°C. The data generated by this effort was inputted into finite element models to predict material response in internally heated nozzle tests. The theoretical model required accurate material properties, realistic thermal boundary conditions, transient heat transfer analysis, and a good understanding of the displacement constraints. The results of the modeling suggest that HfB2 should survive the high thermal stresses generated during the nozzle test primarily because of its superior thermal conductivity. The comparison the theoretical failure calculations to the observed response in actual test conditions show quite good agreement implying that the behavior of the design is well understood.

233 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
92% related
Ceramic
155.2K papers, 1.6M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
82% related
Finite element method
178.6K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,785
20226,968
20213,940
20203,386
20193,138