scispace - formally typeset
Search or ask a question
Topic

Floating wind turbine

About: Floating wind turbine is a research topic. Over the lifetime, 1017 publications have been published within this topic receiving 17595 citations.


Papers
More filters
ReportDOI
01 Feb 2009
TL;DR: In this article, a three-bladed, upwind, variable speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology is described.
Abstract: This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

4,194 citations

ReportDOI
01 Dec 2007
TL;DR: In this paper, the authors describe the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines, which is used to simulate the dynamic response of wind turbines.
Abstract: This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

677 citations

ReportDOI
01 May 2010
TL;DR: In this article, the authors present the specifications of an offshore floating wind turbine, which are needed by the participants for building aero-hydro-servo-elastic models during the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3).
Abstract: Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

515 citations

Journal ArticleDOI
TL;DR: The WindFloat as discussed by the authors is a three-legged floating foundation for multimegawatt offshore wind turbines, which is designed to accommodate a wind turbine, 5 MW or larger, on one of the columns of the hull with minimal modifications to the nacelle and rotor.
Abstract: This manuscript summarizes the feasibility study conducted for the WindFloat technology. The WindFloat is a three-legged floating foundation for multimegawatt offshore wind turbines. It is designed to accommodate a wind turbine, 5 MW or larger, on one of the columns of the hull with minimal modifications to the nacelle and rotor. Potential redesign of the tower and of the turbine control software can be expected. Technologies for floating foundations for offshore wind turbines are evolving. It is agreed by most experts that the offshore wind industry will see a significant increase in activity in the near future. Fixed offshore turbines are limited in water depth to ∼30–50 m. Market transition to deeper waters is inevitable, provided that suitable technologies can be developed. Despite the increase in complexity, a floating foundation offers the following distinct advantages: Flexibility in site location; access to superior wind resources further offshore; ability to locate in coastal regions with limited shallow continental shelf; ability to locate further offshore to eliminate visual impacts; an integrated hull, without a need to redesign the transition piece between the tower and the submerged structure for every project; simplified offshore installation procedures. Anchors are significantly cheaper to install than fixed foundations and large diameter towers. This paper focuses first on the design basis for wind turbine floating foundations and explores the requirements that must be addressed by design teams in this new field. It shows that the design of the hull for a large wind turbine must draw on the synergies with oil and gas offshore platform technology, while accounting for the different design requirements and functionality of the wind turbine. This paper describes next the hydrodynamic analysis of the hull, as well as ongoing work consisting of coupling hull hydrodynamics with wind turbine aerodynamic forces. Three main approaches are presented: The numerical hydrodynamic model of the platform and its mooring system; wave tank testing of a scale model of the platform with simplified aerodynamic simulation of the wind turbine; FAST, an aeroservoelastic software package for wind turbine analysis with the ability to be coupled to the hydrodynamic model. Finally, this paper focuses on the structural engineering that was performed as part of the feasibility study conducted for qualification of the technology. Specifically, the preliminary scantling is described and the strength and fatigue analysis methodologies are explained, focusing on the following aspects: The coupling between the wind turbine and the hull and the interface between the hydrodynamic loading and the structural response.

406 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive analysis and comparison of the levelised cost of energy (LCOE) for the following offshore floating wind turbine concepts: Spar-Buoy (Hywind II), Tension-Leg-Spar (SWAY), Semi-Submersible (WindFloat), TLWT, and tension-leg-buoy (TLB).

330 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
73% related
Turbine
106.6K papers, 1M citations
71% related
Rotor (electric)
179.9K papers, 1.2M citations
67% related
Renewable energy
87.6K papers, 1.6M citations
66% related
Energy storage
65.6K papers, 1.1M citations
64% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202195
202092
201992
201889
201768