scispace - formally typeset
Search or ask a question
Topic

Flood basalt

About: Flood basalt is a research topic. Over the lifetime, 1998 publications have been published within this topic receiving 124675 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that the production of magmatically active rifted margins and the effusion of flood basalts onto the adjacent continents can be explained by a simple model of rifting above a thermal anomaly in the underlying mantle.
Abstract: When continents rift to form new ocean basins, the rifting is sometimes accompanied by massive igneous activity. We show that the production of magmatically active rifted margins and the effusion of flood basalts onto the adjacent continents can be explained by a simple model of rifting above a thermal anomaly in the underlying mantle. The igneous rocks are generated by decompression melting of hot asthenospheric mantle as it rises passively beneath the stretched and thinned lithosphere. Mantle plumes generate regions beneath the lithosphere typically 2000 km in diameter with temperatures raised 100–200°C above normal. These relatively small mantle temperature increases are sufficient to cause the generation of huge quantities of melt by decompression: an increase of 100°C above normal doubles the amount of melt whilst a 200°C increase can quadruple it. In the first part of this paper we develop our model to predict the effects of melt generation for varying amounts of stretching with a range of mantle temperatures. The melt generated by decompression migrates rapidly upward, until it is either extruded as basalt flows or intruded into or beneath the crust. Addition of large quantities of new igneous rock to the crust considerably modifies the subsidence in rifted regions. Stretching by a factor of 5 above normal temperature mantle produces immediate subsidence of more than 2 km in order to maintain isostatic equilibrium. If the mantle is 150°C or more hotter than normal, the same amount of stretching results in uplift above sea level. Melt generated from abnormally hot mantle is more magnesian rich than that produced from normal temperature mantle. This causes an increase in seismic velocity of the igneous rocks emplaced in the crust, from typically 6.8 km/s for normal mantle temperatures to 7.2 km/s or higher. There is a concomitant density increase. In the second part of the paper we review volcanic continental margins and flood basalt provinces globally and show that they are always related to the thermal anomaly created by a nearby mantle plume. Our model of melt generation in passively upwelling mantle beneath rifting continental lithosphere can explain all the major rift-related igneous provinces. These include the Tertiary igneous provinces of Britain and Greenland and the associated volcanic continental margins caused by opening of the North Atlantic in the presence of the Iceland plume; the Parana and parts of the Karoo flood basalts together with volcanic continental margins generated when the South Atlantic opened; the Deccan flood basalts of India and the Seychelles-Saya da Malha volcanic province created when the Seychelles split off India above the Reunion hot spot; the Ethiopian and Yemen Traps created by rifting of the Red Sea and Gulf of Aden region above the Afar hot spot; and the oldest and probably originally the largest flood basalt province of the Karoo produced when Gondwana split apart. New continental splits do not always occur above thermal anomalies in the mantle caused by plumes, but when they do, huge quantities of igneous material are added to the continental crust. This is an important method of increasing the volume of the continental crust through geologic time.

2,821 citations

Journal ArticleDOI
TL;DR: In this article, the authors compile all known in situ LIPs younger than 250 Ma and analyze dimensions, crustal structures, ages, and emplacement rates of representatives of the three major LIP categories: Ontong Java and Kerguelen-Broken Ridge oceanic plateaus, North Atlantic volcanic passive margins, and Deccan and Columbia River continental flood basalts Crustal thickness ranges from 20 to 40 km, and the lower crust is characterized by high (70-76 km s?1) compressional wave velocities.
Abstract: Large igneous provinces (LIPs) are a continuum of voluminous iron and magnesium rich rock emplacements which include continental flood basalts and associated intrusive rocks, volcanic passive margins, oceanic plateaus, submarine ridges, seamount groups, and ocean basin flood basalts Such provinces do not originate at “normal” seafloor spreading centers We compile all known in situ LIPs younger than 250 Ma and analyze dimensions, crustal structures, ages, and emplacement rates of representatives of the three major LIP categories: Ontong Java and Kerguelen-Broken Ridge oceanic plateaus, North Atlantic volcanic passive margins, and Deccan and Columbia River continental flood basalts Crustal thicknesses range from 20 to 40 km, and the lower crust is characterized by high (70-76 km s?1) compressional wave velocities Volumes and emplacement rates derived for the two giant oceanic plateaus, Ontong Java and Kerguelen, reveal short-lived pulses of increased global production; Ontong Java’s rate of emplacement may have exceeded the contemporaneous global production rate of the entire mid-ocean ridge system The major part of the North Atlantic volcanic province lies offshore and demonstrates that volcanic passive margins belong in the global LIP inventory Deep crustal intrusive companions to continental flood volcanism represent volumetrically significant contributions to the crust We envision a complex mantle circulation which must account for a variety of LIP sizes, the largest originating in the lower mantle and smaller ones developing in the upper mantle This circulation coexists with convection associated with plate tectonics, a complicated thermal structure, and at least four distinct geochemical/isotopic reservoirs LIPs episodically alter ocean basin, continental margin, and continental geometries and affect the chemistry and physics of the oceans and atmosphere with enormous potential environmental impact Despite the importance of LIPs in studies of mantle dynamics and global environment, scarce age and deep crustal data necessitate intensified efforts in seismic imaging and scientific drilling in a range of such features

1,367 citations

Journal ArticleDOI
06 Oct 1989-Science
TL;DR: Continental flood basalt eruptions have resulted in sudden and massive accumulations of basaltic lavas in excess of any contemporary volcanic processes, thought to result from deep mantle plumes.
Abstract: Continental flood basalt eruptions have resulted in sudden and massive accumulations of basaltic lavas in excess of any contemporary volcanic processes. The largest flood basalt events mark the earliest volcanic activity of many major hot spots, which are thought to result from deep mantle plumes. The relative volumes of melt and eruption rates of flood basalts and hot spots as well as their temporal and spatial relations can be explained by a model of mantle plume initiation: Flood basalts represent plume "heads" and hot spots represent continuing magmatism associated with the remaining plume conduit or "tail." Continental rifting is not required, although it commonly follows flood basalt volcanism, and flood basalt provinces may occur as a natural consequence of the initiation of hot-spot activity in ocean basins as well as on continents.

1,180 citations

Journal ArticleDOI
05 Mar 2010-Science
TL;DR: Records of the global stratigraphy across this boundary are synthesized to assess the proposed causes of the Cretaceous-Paleogene boundary and conclude that the Chicxulub impact triggered the mass extinction.
Abstract: The Cretaceous-Paleogene boundary similar to 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

1,135 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the physical and chemical characteristics of two flood basalt provinces (the Deccan and Karoo) with predictions of the dynamical model and conclude that the high-temperature melts associated with continental flood basalts are derived from hot, relatively uncontaminated plume-source mantle at the plume axis.

1,088 citations


Network Information
Related Topics (5)
Mantle (geology)
26.1K papers, 1.3M citations
94% related
Subduction
22.4K papers, 1.1M citations
94% related
Lithosphere
14.5K papers, 723.8K citations
93% related
Crust
20.7K papers, 933.1K citations
92% related
Basalt
18.6K papers, 805.1K citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
2022115
202161
202047
201957
201860