scispace - formally typeset
Search or ask a question
Topic

Flow control (data)

About: Flow control (data) is a research topic. Over the lifetime, 8007 publications have been published within this topic receiving 106756 citations. The topic is also known as: data flow control.


Papers
More filters
Journal ArticleDOI
TL;DR: An optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates to solve the dual problem using a gradient projection algorithm.
Abstract: We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.

2,101 citations

Journal ArticleDOI
TL;DR: It is shown that a simple additive increase and multiplicative decrease algorithm satisfies the sufficient conditions for con- vergence to an efficient and fair state regardless of the starting state of the network.
Abstract: Congestion avoidance mechanisms allow a network to operate in the optimal region of low delay and high throughput, thereby, preventing the network from becoming congested. This is different from the traditional congestion control mechanisms that allow the network to recover from the congested state of high delay and low throughput. Both con- gestion avoidance and congestion control mechanisms are basi- cally resource management problems. They can be formulated as system control problems in which the system senses its state and feeds this back to its users who adjust their controls. The key component of any congestion avoidance scheme is the algorithm (or control function) used by the users to in- crease or decrease their load (window or rate). We abstractly characterize a wide class of such increase/decreas e algorithms and compare them using several different performance metrics. They key metrics are efficiency, fairness, convergence time, and size of oscillations. It is shown that a simple additive increase and multiplicative decrease algorithm satisfies the sufficient conditions for con- vergence to an efficient and fair state regardless of the starting state of the network. This is the algorithm finally chosen for implementation in the congestion avoidance scheme recom- mended for Digital Networking Architecture and OSI Trans- port Class 4 Networks.

1,847 citations

Journal ArticleDOI
TL;DR: It is argued that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion, and several general approaches are discussed for identifying those flows suitable for bandwidth regulation.
Abstract: This paper considers the potentially negative impacts of an increasing deployment of non-congestion-controlled best-effort traffic on the Internet. These negative impacts range from extreme unfairness against competing TCP traffic to the potential for congestion collapse. To promote the inclusion of end-to-end congestion control in the design of future protocols using best-effort traffic, we argue that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion. The paper discusses several general approaches for identifying those flows suitable for bandwidth regulation. These approaches are to identify a high-bandwidth flow in times of congestion as unresponsive, "not TCP-friendly", or simply using disproportionate bandwidth. A flow that is not "TCP-friendly" is one whose long-term arrival rate exceeds that of any conformant TCP in the same circumstances. An unresponsive flow is one failing to reduce its offered load at a router in response to an increased packet drop rate, and a disproportionate-bandwidth flow is one that uses considerably more bandwidth than other flows in a time of congestion.

1,787 citations

Journal ArticleDOI
28 Aug 2000
TL;DR: A mechanism for equation-based congestion control for unicast traffic that refrains from reducing the sending rate in half in response to a single packet drop, and uses both simulations and experiments over the Internet to explore performance.
Abstract: This paper proposes a mechanism for equation-based congestion control for unicast traffic. Most best-effort traffic in the current Internet is well-served by the dominant transport protocol, TCP. However, traffic such as best-effort unicast streaming multimedia could find use for a TCP-friendly congestion control mechanism that refrains from reducing the sending rate in half in response to a single packet drop. With our mechanism, the sender explicitly adjusts its sending rate as a function of the measured rate of loss events, where a loss event consists of one or more packets dropped within a single round-trip time. We use both simulations and experiments over the Internet to explore performance.

1,458 citations

Journal ArticleDOI
TL;DR: An optimization-based framework is described that provides an interpretation of various flow control mechanisms, in particular, the utility being optimized by the protocol's equilibrium structure, and presents a new protocol that overcomes limitations and provides stability in a way that is scalable to arbitrary networks, link capacities, and delays.
Abstract: This article reviews the current transmission control protocol (TCP) congestion control protocols and overviews recent advances that have brought analytical tools to this problem. We describe an optimization-based framework that provides an interpretation of various flow control mechanisms, in particular, the utility being optimized by the protocol's equilibrium structure. We also look at the dynamics of TCP and employ linear models to exhibit stability limitations in the predominant TCP versions, despite certain built-in compensations for delay. Finally, we present a new protocol that overcomes these limitations and provides stability in a way that is scalable to arbitrary networks, link capacities, and delays.

822 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
79% related
Optimization problem
96.4K papers, 2.1M citations
77% related
Network packet
159.7K papers, 2.2M citations
77% related
Wireless sensor network
142K papers, 2.4M citations
76% related
Control theory
299.6K papers, 3.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023142
2022269
2021188
2020216
2019223
2018257