scispace - formally typeset
Search or ask a question

Showing papers on "Flow separation published in 2004"


Journal ArticleDOI
TL;DR: Comparing computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane investigates unsteady effects and compares two-dimensional computations and three-dimensional experiments in several qualitatively different kinematic patterns.
Abstract: We compare computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane. In particular, we investigate unsteady effects and compare two-dimensional (2D) computations and three-dimensional (3D) experiments in several qualitatively different kinematic patterns. In all cases, the computed drag compares well with the experiments. The computed lift agrees in the cases in which the sinusoidal changes in angle of attack are symmetrical or advanced with respect to stroke positions, but lags behind the measured 3D lift in the delayed case. In the range of amplitudes studied here, 3-5 chords, the force coefficients have a weak dependence on stroke amplitude. As expected, the forces are sensitive to the phase between stroke angle and angle of attack, a result that can be explained by the orientation of the wing at reversal. This dependence on amplitude and phase suggests a simple maneuver strategy that could be used by a flapping wing device. In all cases the unsteady forces quickly reach an almost periodic state with continuous flapping. The fluid forces are dominated by the pressure contribution. The force component directly proportional to the linear acceleration is smaller by a factor proportional to the ratio of wing thickness and stroke amplitude; its net contribution is zero in hovering. The ratio of wing inertia and fluid force is proportional to the product of the ratio of wing and fluid density and the ratio of wing thickness and stroke amplitude; it is negligible in the robotic wing experiment, but need not be in insect flight. To identify unsteady effects associated with wing acceleration, and coupling between rotation and translation, as well as wake capture, we examine the difference between the unsteady forces and the estimates based on translational velocities, and compare them against the estimate of the coupling between rotation and translation, which have simple analytic forms for sinusoidal motions. The agreement and disagreement between the computed forces and experiments offer further insight into when the 3D effects are important. A main difference between a 3D revolving wing and a 2D translating wing is the absence of vortex shedding by a revolving wing over a distance much longer than the typical stroke length of insects. No doubt such a difference in shedding dynamics is responsible in part for the differences in steady state force coefficients measured in 2D and 3D. On the other hand, it is unclear whether such differences would have a significant effect on transient force coefficients before the onset of shedding. While the 2D steady state force coefficients underpredict 3D forces, the transient 2D forces measured prior to shedding are much closer to the 3D forces. In the cases studied here, the chord is moving between 3 to 5 chords, typical of hovering insect stroke length, and the flow does not appear to separate during each stroke in the cases of advanced and symmetrical rotation. In these cases, the wing reverses before the leading edge vortex would have time to separate even in 2D. This suggests that the time scale for flow separation in these strokes is dictated by the flapping frequency, which is dimensionally independent. In such cases, the 2D unsteady forces turn out to be good approximations of 3D experiments.

505 citations


Book ChapterDOI
F. R. Menter1, M. Kuntz1
01 Jan 2004
TL;DR: Turbulence model development for aerodynamic applications has for many years concentrated on improving the capabilities of CFD methods for separation prediction as discussed by the authors, which has led to a series of models capable of capturing boundary layer separation in good agreement with experimental data.
Abstract: Turbulence model development for aerodynamic applications has for many years concentrated on improving the capabilities of CFD methods for separation prediction. Validation studies of turbulence models in the ‘80th have clearly shown that most turbulence models were not capable of predicting the development of turbulent boundary layers under adverse pressure gradient conditions. Based on that observation, new models were developed to specifically meet this challenge, resulting in a series of models capable of capturing boundary layer separation in good agreement with experimental data (Johnson and King 1984, Menter 1993, Spalart and Allmaras 1994).

327 citations


Journal ArticleDOI
TL;DR: It appears that stability of the LEV is achieved by a general mechanism whereby flapping kinematics are configured so that a LEV would be expected to form naturally over the wing and remain attached for the duration of the stroke, however, the actual formation and shed is controlled by wing angle of attack.
Abstract: SUMMARY Here we show, by qualitative free- and tethered-flight flow visualization, that dragonflies fly by using unsteady aerodynamic mechanisms to generate high-lift, leading-edge vortices. In normal free flight, dragonflies use counterstroking kinematics, with a leading-edge vortex (LEV) on the forewing downstroke, attached flow on the forewing upstroke, and attached flow on the hindwing throughout. Accelerating dragonflies switch to in-phase wing-beats with highly separated downstroke flows, with a single LEV attached across both the fore- and hindwings. We use smoke visualizations to distinguish between the three simplest local analytical solutions of the Navier–Stokes equations yielding flow separation resulting in a LEV. The LEV is an open U-shaped separation, continuous across the thorax, running parallel to the wing leading edge and inflecting at the tips to form wingtip vortices. Air spirals in to a free-slip critical point over the centreline as the LEV grows. Spanwise flow is not a dominant feature of the flow field – spanwise flows sometimes run from wingtip to centreline, or vice versa – depending on the degree of sideslip. LEV formation always coincides with rapid increases in angle of attack, and the smoke visualizations clearly show the formation of LEVs whenever a rapid increase in angle of attack occurs. There is no discrete starting vortex. Instead, a shear layer forms behind the trailing edge whenever the wing is at a non-zero angle of attack, and rolls up, under Kelvin–Helmholtz instability, into a series of transverse vortices with circulation of opposite sign to the circulation around the wing and LEV. The flow fields produced by dragonflies differ qualitatively from those published for mechanical models of dragonflies, fruitflies and hawkmoths, which preclude natural wing interactions. However, controlled parametric experiments show that, provided the Strouhal number is appropriate and the natural interaction between left and right wings can occur, even a simple plunging plate can reproduce the detailed features of the flow seen in dragonflies. In our models, and in dragonflies, it appears that stability of the LEV is achieved by a general mechanism whereby flapping kinematics are configured so that a LEV would be expected to form naturally over the wing and remain attached for the duration of the stroke. However, the actual formation and shedding of the LEV is controlled by wing angle of attack, which dragonflies can vary through both extremes, from zero up to a range that leads to immediate flow separation at any time during a wing stroke.

301 citations


ReportDOI
30 Jul 2004
TL;DR: In this paper, the authors investigated the effect of roughness on the near-wall drag-producing turbulent structures and proposed control strategies to reduce momentum loss in rough-wall boundary layers.
Abstract: : The objective of this project is to improve our fundamental knowledge of turbulent flows over rough surfaces. Specifically, we hope to investigate the manner in which roughness affects the near-wall drag-producing turbulent structures, and to what extent surface roughness affects the outer part of rough-wall boundary layers. Ultimately we hope to use this knowledge to propose control strategies to reduce momentum loss in rough-wall boundary layers.

298 citations


Journal ArticleDOI
TL;DR: In this article, the transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm, and the onset of transition occurs at Reynolds numbers of ~1,800-2,000, as indicated by greater thanlaminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline.
Abstract: The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800–2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within −1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.

290 citations


Journal ArticleDOI
TL;DR: In this article, the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0 was investigated.
Abstract: This paper is concerned with the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0. A literature survey was carried out and it was found that the flow shows a strong two-dimensional behavior, on the plane of symmetry, for Reynolds numbers ReD=ρUbD/μ below approximately 400 (Ub= bulk velocity and D= hydraulic diameter). In this Reynolds number range, two-dimensional predictions were carried out to provide information on the general integral properties of backward-facing step flows, on mean velocity distributions and streamlines. Information on characteristic flow patterns is provided for a wide Reynolds number range, 10−4≤ReD≤800. In the limiting case of ReD→0, a sequence of Moffatt eddies of decreasing size and intensity is verified to exist in the concave corner also at ReD=1. The irreversible pressure losses are determined for various Reynolds numbers as a function of the expansion ratio. The two-dimensional simulations are known to underpredict the primary reattachment length for Reynolds numbers beyond which the actual flow is observed to be three-dimensional. The spatial evolution of jet-like flows in both the streamwise and the spanwise direction and transition to three-dimensionality were studied at a Reynolds number ReD=648. This three-dimensional analysis with the same geometry and flow conditions as reported by Armaly et al. (1983) reveals the formation of wall jets at the side wall within the separating shear layer. The wall jets formed by the spanwise component of the velocity move towards the symmetry plane of the channel. A self-similar wall-jet profile emerges at different spanwise locations starting with the vicinity of the side wall. These results complement information on backward-facing step flows that is available in the literature.

259 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the nature of 3D separation and address the way in which topological rules based on a linear treatment of the Navier-Stokes equations can predict properties of the limiting streamlines, including the singularities which form.
Abstract: Flow separations in the corner regions of blade passages are common. The separations are three dimensional and have quite different properties from the two-dimensional separations that are considered in elementary courses of fluid mechanics. In particular the consequences for the flow may be less severe than the two-dimensional separation. This paper describes the nature of three-dimensional separation and addresses the way in which topological rules, based on a linear treatment of the Navier-Stokes equations, can predict properties of the limiting streamlines, including the singularities which form. The paper shows measurements of the flow field in a linear cascade of compressor blades and compares these with the results of 3D CFD. For corners without tip clearance, the presence of three-dimensional separation appears to be universal and the challenge for the designer is to limit the loss and blockage produced. The CFD appears capable of predicting this.Copyright © 2004 by ASME

225 citations


Journal ArticleDOI
TL;DR: In this paper, the authors considered sinusoidal corrugated-plate channels with uniform wall temperature and single-phase constant property flows and obtained numerical solutions using the control-volume finite-difference method for a wide range of channel corrugation aspect ratios and flow rates.

207 citations


Journal ArticleDOI
TL;DR: In this paper, the Strouhal number, St, associated with large-scale shedding is predicted at St∼0.195 along with a higher frequency component associated with the development of the Kelvin-Helmholtz instabilities in the detached shear layers.
Abstract: The flow field around a sphere in an uniform flow has been analyzed numerically for conditions corresponding to the subcritical (laminar separation) and supercritical (turbulent separation) regimes spanning a wide range of Reynolds numbers (104–106). Particular attention has been devoted to assessing predictions of the pressure distribution, skin friction, and drag as well as to understanding the changes in the wake organization and vortex dynamics with the Reynolds number. The unsteady turbulent flow is computed using detached-eddy simulation, a hybrid approach that has Reynolds-averaged Navier–Stokes behavior near the wall and becomes a large eddy simulation in the regions away from solid surfaces. For both the subcritical and supercritical solutions, the agreement with experimental measurements for the mean drag and pressure distribution over the sphere is adequate; differences in skin friction exist due to the simplistic treatment of the attached boundary layers in the computations. Improved agreement in the skin-friction distribution is obtained for the supercritical flows in which boundary layer transition is fixed at the position observed in experiments conducted at the same Reynolds numbers. For the subcritical flows the Strouhal number, St, associated with the large-scale shedding is predicted at St∼0.195 along with a higher frequency component associated with the development of the Kelvin–Helmholtz instabilities in the detached shear layers. If in the subcritical regime the wake assumes a helical-like form due to the shedding of hairpin-like vortices at different azimuthal angles, in the supercritical regime the wake structure is characterized by “regular” shedding of hairpin-like vortices at approximately the same azimuthal angle and at a much higher frequency (St∼1.3) that is practically independent of the Reynolds number and not sensitive to the position of laminar-to-turbulent transition.

206 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed an inflow generation method for spatial simulations of compressible turbulent boundary layers, which is different from other existing rescaling techniques, in that a more consistent rescaling is employed for the mean and fluctuating thermodynamic variables.
Abstract: A description of different inflow methodologies for turbulent boundary layers, including validity and limitations, is presented. We show that the use of genuine periodic boundary conditions, in which no alteration of the governing equations is made, results in growing mean flow and decaying turbulence. Premises under which the usage is valid are presented and explained, and comparisons with the extended temporal approach [T. Maeder, N. A. Adams, and L. Kleiser, “Direct simulation of turbulent supersonic boundary layers by an extended temporal approach,” J. Fluid Mech. 429, 187 (2001)] are used to assess the validity. Extending the work by Lund et al. [J. Comput. Phys. 140, 233 (1998)], we propose an inflow generation method for spatial simulations of compressible turbulent boundary layers. The method generates inflow by reintroducing a rescaled downstream flow field to the inlet of a computational domain. The rescaling is based on Morkovin’s hypothesis [P. Bradshaw, “Compressible turbulent shear layers,” Annu. Rev. Fluid Mech. 9, 33 (1977)] and generalized temperature–velocity relationships. This method is different from other existing rescaling techniques [S. Stolz and N. A. Adams, “Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique,” Phys. Fluids 15, 2398 (2003); G. Urbin and D. Knight, “Large-eddy simulation of a supersonic boundary layer using an unstructured grid,” AIAA J. 39, 1288 (2001)], in that a more consistent rescaling is employed for the mean and fluctuating thermodynamic variables. The results are compared against the well established van Driest II theory and indicate that the method is efficient and accurate.

205 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the gas flow in microgeometries using the direct simulation Monte Carlo (DSMC) method and showed that the channel geometry significantly affects the microgas flow.

Journal ArticleDOI
TL;DR: In this article, a three-regime correlation is developed for the excess bend loss coefficient as a function of Reynolds number, aspect ratios, curvature ratios and spacer lengths between the channels.

Journal ArticleDOI
TL;DR: In this article, the authors investigated flow characteristics of low Reynolds number laminar flow through gradually expanding conical and planar diffusers and quantified the results from numerical analysis in terms of pressure loss coefficient.
Abstract: Flow characteristics of low Reynolds number laminar flow through gradually expanding conical and planar diffusers were investigated. Such diffusers are used in valveless micropumps to effect flow rectification and thus lead to pumping action in one preferential direction. Four different types of diffuser flows are considered: fully developed and thin inlet boundary layer flows through conical and planar diffusers. The results from the numerical analysis have been quantified in terms of pressure loss coefficient. The variation of pressure loss coefficient with diffuser angle is presented for Reynolds numbers of 200, 500 and 1000. The pressure loss coefficients have been used to calculate the diffuser efficiency for two different types of nozzle-diffuser elements. The general trend of variation of pressure loss coefficient with diffuser angle was found to be similar to that for high Reynolds number turbulent flow. However, unlike at high Reynolds numbers, pressure loss coefficients at low Reynolds numbers vary significantly with Reynolds number. It was also observed that trends of variation in the pressure loss coefficient with Reynolds number are different for small and large diffuser angles. Also, at low Reynolds numbers, the pressure loss coefficients for a thin inlet boundary layer are not always smaller than those for fully developed inlet boundary layer, in contrast to the behavior for high Reynolds number flows. Contrary to past claims, flow rectification is shown to be indeed possible for laminar flows. The two different types of nozzle-diffuser elements considered led to pumping action in opposite directions. Further, it was observed that flow rectification properties of both kinds of nozzle-diffuser elements improved with increasing Reynolds number.

Journal ArticleDOI
TL;DR: In this paper, a Computational Fluid Dynamics (CFD) model was used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height and stoss slope basal length.

Journal ArticleDOI
TL;DR: In this paper, a harmonic-balance computational fluid dynamic approach for modeling limit-cycle oscillation behavior of aeroelastic airfoil configurations in a viscous transonic flow is presented.
Abstract: Presented is a harmonic-balance computational fluid dynamic approach for modeling limit-cycle oscillation behavior of aeroelastic airfoil configurations in a viscous transonic flow. For the NLR 7301 airfoil configuration studied, accounting for viscous effects is shown to significantly influence computed limit-cycle oscillation trends when compared to an inviscid analysis. A methodology for accounting for changes in mean angle of attack during limit-cycle oscillation is also developed.

Journal ArticleDOI
TL;DR: In this article, the separation point of the flow around a circular cylinder has been numerically and experimentally investigated in the regime of Reynolds number less than 280, and the results reveal that the long-existing discrepancy in the data concerning the time-averaged separation angles reported in the literature results mainly from the oscillating characteristics of flow separation on the cylinder surface and the experimental methodologies rather than the commonly mentioned blockage-ratio effect.
Abstract: The separation point of the flow around a circular cylinder has been numerically and experimentally investigated in the regime of Reynolds number less than 280. The present results reveal that the long-existing discrepancy in the data concerning the time-averaged separation angles reported in the literature results mainly from the oscillating characteristics of the flow separation on the cylinder surface and the experimental methodologies rather than the commonly mentioned blockage-ratio effect. In the present experiment, the time-averaged separation angles are obtained by averaging the instantaneous images from a soap-film flow visualization instead of from the commonly used streakline images from finite time exposures. Excellent agreement has been achieved between the present experimental results and numerical simulations by the spectral element method. Particle-streak visualization in a towing tank has also been conducted to compare with that of the two-dimensional soap-film experiments. It reveals that the separation angle is insensitive to the three-dimensional effect. Variations of the time-averaged separation angles with Reynolds number can be represented by a four-term -range. The blockage effect on the separation angle has also been quantitatively analysed.

Journal ArticleDOI
TL;DR: In this paper, a dynamical system approach was used to extend Prandtl's steady separation criterion to two-dimensional unsteady flows with no-slip boundaries, and the authors obtained explicit Eulerian formulae for the location of flow separation and reattachment on fixed and moving boundaries.
Abstract: We use a dynamical systems approach to extend Prandtl's steady separation criterion to two-dimensional unsteady flows with no-slip boundaries. Viewing separation profiles as non-hyperbolic unstable manifolds in the Lagrangian frame, we obtain explicit Eulerian formulae for the location of flow separation and reattachment on fixed and moving boundaries. We also derive high-order approximations for the unsteady separation profile in the vicinity of the boundary. Our criteria and formulae only use the derivatives of the velocity field along the boundary, and hence are of use in monitoring and controlling separation. In particular, we predict unsteady flow separation points and separation angles from distributed pressure and skin-friction measurements along the wall. As an example, we predict and verify separation points and separation profiles in variants of a two-dimensional oscillating separation-bubble flow.

Journal ArticleDOI
TL;DR: In this article, the authors showed that active control using oscillatory flow excitation can effectively delay flow separation from, and reattach separated flow to, aerodynamic surfaces at various flight conditions.

Journal ArticleDOI
TL;DR: In this article, an empirically based transition modeling capability for both attached-and separated-flow transition against cascade data is reported, which is used in a RANS solver for airfoil design.
Abstract: Here we report on an effort to include an empirically based transition modeling capability in a RANS solver. Testing of well-known empirical models from literature for both attached- and separated-flow transition against cascade data revealed that the models did not provide enough fidelity for implementation in an airfoil design system. Consequently, a program was launched to develop models that would provide sufficient accuracy for use in an airfoil design system. As a first step in the effort, accurate modeling of freestream turbulence development was identified as a need for any form of transition modeling capability. Additionally, capturing the effects of freestream turbulence on pre-transitional boundary layers was found to have a significant effect on the accuracy of transition modeling. A CFD-supplemented database of experimental cascade cases (57 with attached-flow transition and 47 with separation and turbulent reattachment) was constructed to explore the development of new correlations. Dimensional analyses were performed to guide the work and appropriate non-dimensional parameters were then extracted from CFD predictions of the laminar boundary layers existing on the airfoil surfaces prior to either transition onset or incipient separation. For attached-flow transition, exploration of the database revealed a distinct correlation between local levels of freestream turbulence intensity, turbulence length scale, and momentum-thickness Reynolds number at transition onset. It was found that the correlation could be recast as a ratio of the boundary-layer diffusion time to a time-scale associated with the energy-bearing turbulent eddies. In the case of separated-flow transition, it was found that the length of a separation bubble prior to turbulent re-attachment was a simple function of the local momentum thickness at separation and the overall surface length traversed by a fluid element prior to separation. Both the attached- and separated-flow transition models were implemented into the design system as point-like trips.Copyright © 2004 by ASME

Journal ArticleDOI
TL;DR: In this paper, the authors examined initial asymmetric wedge-impact flows with horizontal as well as vertical impact velocity, and the experimental investigation of initial flow separation off the wedge vertex (i.e., keel) during impact is described.
Abstract: This paper examines initial asymmetric wedge-impact flows with horizontal as well as vertical impact velocity. The method of two-dimensional vortex distributions is employed to model the initial-boundary-value problem. The numerical analysis involves discretization of the body surface and an iterative solution technique. Experimental drop tests of a prismatic wedge were performed to gain understanding and provide data for comparison of initial water impact when asymmetry and horizontal impact velocity are present. The experimental investigation of initial flow separation off the wedge vertex (i.e., keel) during impact is described. Initial separation-ventilation of the flow from the vertex due to asymmetric impact or horizontal-vertical impact velocity is examined in relation to the present theory. Agreement between the data and the numerical predictions was demonstrated for small degrees of asymmetry and small ratios of horizontal to vertical impact velocity. The initial flow detachment from the vertex also revealed interesting hydrodynamic characteristics.

Journal ArticleDOI
TL;DR: The wall-boundary condition problem is to account for the effects of the near-wall turbulence between the wall and the first node and its transfer of momentum to the wall as discussed by the authors.
Abstract: Large-eddy simulation (LES) of wall-bounded flows becomes prohibitively expensive at high Reynolds numbers if one attempts to resolve the small but dynamically important vortical structures in the near-wall region. The LES wall-boundary condition problem is thus to account for the effects of the near-wall turbulence between the wall and the first node and its transfer of momentum to the wall. Here we state the problem and give a brief overview of methods currently in use and possible future methods. To illustrate the problem and quantify the accuracy of some of the models, we present a few results from test cases ranging from fully developed turbulent channel flows to three-dimensional problems of practical engineering interest

Journal ArticleDOI
TL;DR: In this paper, the driving mechanism of unsteady e ow mode pulsation arising over axisymmetric spiked bodies has been analyzed by using computational engine dynamics as a tool.
Abstract: The driving mechanism of the unsteady e ow mode pulsation arising over axisymmetric spiked bodies has been analyzed by using computational e uid dynamics as a tool. Laminar, axisymmetric e ow at Mach 2.21 and Reynolds number (based on the blunt-body diameter) of 0.12 £106 was simulated by a spatially and temporally second-order-accurate e nite volume method. The model geometry was a forward facing cylinder of diameter D equipped with a spike of length L/D=1.00. After reviewing previous pulsation hypotheses, the numerical results were analyzed in detail. A new driving mechanism was proposed, its main features being the creation of a vortical region in the vicinity of the foreshock-aftershock intersection causing mass ine ux into the dead-air region, the existence of supersonic e ow within the dead-air region, the liftoff of the shear layer from the spike tip, and the collision of the recirculated and penetrating e ows within the expanded separated region.

Journal ArticleDOI
TL;DR: In this paper, a generalized Rayleigh discriminant is computed from a two-dimensional numerical simulation of the basic flow in the same geometry, and it is shown that three regions of the 2D flow are potentially unstable through the centrifugal instability.
Abstract: Three-dimensional stationary structure of the flow over a backward-facing step is studied experimentally. Visualizations and Particle Image Velocimetry (PIV) measurements are investigated. It is shown that the recirculation length is periodically modulated in the spanwise direction with a well-defined wavelength. Visualizations also reveal the presence of longitudinal vortices. In order to understand the origin of this instability, a generalized Rayleigh discriminant is computed from a two-dimensional numerical simulation of the basic flow in the same geometry. This study reveals that actually three regions of the two-dimensional flow are potentially unstable through the centrifugal instability. However both the experiment and the computation of a local Gortler number suggest that only one of these regions is unstable. It is localized in the vicinity of the reattached flow and outside the recirculation bubble.

Journal Article
TL;DR: In this paper, the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle are described, including the effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles.
Abstract: In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

Proceedings ArticleDOI
01 Jan 2004
TL;DR: In this paper, low speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for a workshop aimed at validating CFD turbulence models.
Abstract: Low speed flow separation over a wall-mounted hump, and its control using steady suction, were studied experimentally in order to generate a data set for a workshop aimed at validating CFD turbulence models. The baseline and controlled data sets comprised static and dynamic surface pressure measurements, flow field measurements using Particle Image Velocimetry (PIV) and wall shear stress obtained via oil-film interferometry. In addition to the specific test cases studied, surface pressures for a wide variety of conditions were reported for different Reynolds numbers and suction rates. Stereoscopic PIV and oil-film flow visualization indicated that the baseline separated flow field was mainly twodimensional. With the application of control, some three-dimensionality was evident in the spanwise variation of pressure recovery, reattachment location and spanwise pressure fluctuations. Part 2 of this paper, under preparation for the AIAA Meeting in Reno 2005, considers separation control by means of zero-efflux oscillatory blowing.

Journal ArticleDOI
TL;DR: In this paper, three potential origins of side loads were observed and investigated, namely, the pressure fluctuations in the separation and recirculation zone due to the unsteadiness of the separation location, the transition of separation pattern between free-shock separation and restricted shock separation, and aeroelastic coupling, which indeed cannot cause but do amply existing side loads to significant levels.
Abstract: The operation of rocket engines in the overexpanded mode, that is, with the ambient pressure considerably higher than the nozzle exit wall pressure, can result in dangerous lateral loads acting on the nozzle. These loads occur as the boundary layer separates from the nozzle wall and the pressure distribution deviates from its usual axisymmetric shape. Different aerodynamic or even coupled aerodynamic/structural mechanic reasons can cause an asymmetric pressure distribution. A number of subscale tests have been performed, and three potential origins of side loads were observed and investigated, namely, the pressure fluctuations in the separation and recirculation zone due to the unsteadiness of the separation location, the transition of separation pattern between free-shock separation and restricted-shock separation, and aeroelastic coupling, which indeed cannot cause but do amply existing side loads to significant levels. All three mechanisms are described in detail, and methods are presented to calculate their magnitude and pressure ratio at which they occur.

Journal ArticleDOI
TL;DR: In this article, experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery were conducted. And they showed that the mean flow is at most a very weak function of the Reynolds number while turbulence quantities strongly depend on Reynolds number.
Abstract: The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.

Journal ArticleDOI
TL;DR: In this article, the instantaneous and averaged flow structure of a delta wing of low sweep angle was investigated using a technique of high-image-density particle image velocimetry, where the authors focused on crossflow planes, where vortex breakdown and stall occur, and the identification of buffeting mechanisms in these regions.
Abstract: The instantaneous and averaged flow structure past a delta wing of low sweep angle is investigated using a technique of high-image-density particle image velocimetry. Emphasis is on crossflow planes, where vortex breakdown and stall occur, and the identification of buffeting mechanisms in these regions. At all values of angle of attack up to the fully stalled condition, the averaged vorticity layer exhibits an elongated form; the classical (single) large-scale concentration of vorticity within the leading-edge vortex of a highly swept wing is not present. At low angle of attack α, this elongated, averaged layer can exhibit, however, well-defined concentrations of vorticity. These elongated vorticity layers are accompanied by narrow recirculation zones adjacent to the wing surface. Furthermore, the averaged streamline topology exhibits, at lower α, a saddle point located slightly outboard of the leading edge, in contrast to a saddle point located on the plane of the symmetry of a highly swept wing. Patterns of velocity fluctuation and Reynolds stress show peaks that are generally coincident with large values of averaged vorticity, which indicates that they arise from unsteady events in regions of high shear

ReportDOI
01 May 2004
TL;DR: In this article, a plasma actuator was developed for leading-edge separation on stationary and oscillating airfoils, which consists of two copper electrodes separated by a dielectric insulator, and when the voltage supplied to the electrodes is sufficiently high, the surrounding air ionizes forms plasma in regions of high electrical field potential.
Abstract: : Given the importance of separation control associated with retreating blade stall on helicopters, the primary objective of this work was to develop a plasma actuator flow control device for its use in controlling leading-edge separation on stationary and oscillating airfoils. The plasma actuator consists of two copper electrodes separated by a dielectric insulator. When the voltage supplied to the electrodes is sufficiently high, the surrounding air ionizes forms plasma in the regions of high electrical field potential. The ionized air, in the presence of an electric field gradient, results in a body force on the flow.

Proceedings ArticleDOI
28 Jun 2004
TL;DR: In this paper, the DBD plasma actuator is applied to a circular cylinder at a Reynolds number of 7400 and hot film measurements show that vortex shedding frequency can be driven to the actuator forcing frequency, exhibiting "lock-in" behavior similar to that previously shown with the other forcing methods.
Abstract: A number of methods have been developed over the years to affect the wake of a circular cylinder. These include oscillation of the cylinder normal to the direction of flow, rotational oscillation, and blowing and suction through slots. While each of these methods has been found effective for operation at low Reynolds numbers, their low bandwidth, resonance, or form factor make them generally unsuitable for robust operation. As the field of flow control aims to affect flows of Reynolds numbers of technical interest, there is a need for actuators with higher bandwidth and non-resonant behavior for robust mitigation of Karman Vortex Street-induced drag and oscillatory lift. The dielectric barrier discharge (DBD) plasma electrode has been developed as a flow control actuator over the last few years, showing the ability to affect flow behavior in a range of applications. In this effort, the DBD plasma actuator is applied to a circular cylinder at a Reynolds number of 7400. Hot film measurements show that vortex shedding frequency can be driven to the actuator forcing frequency, exhibiting "lock-in" behavior similar to that previously shown with the other forcing methods. Preliminary data indicates that plasma actuators are effective in controlling vortex shedding frequency and in achieving spanwise coherent shedding. They also can alter the vortex shedding frequency within forcing amplitude/frequency bands similar to that for the above methods at lower Reynolds number. Flow visualization shows the actuators have significant authority in affecting flow separation and wake behavior.