scispace - formally typeset
Search or ask a question

Showing papers on "Flow separation published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors analyse recent experimental data in the Reynolds number range of nominally 2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface layer, and show that the data support the existence of a universal logarithmic region.
Abstract: Considerable discussion over the past few years has been devoted to the question of whether the logarithmic region in wall turbulence is indeed universal. Here, we analyse recent experimental data in the Reynolds number range of nominally 2 × 104 < Reτ < 6 × 105 for boundary layers, pipe flow and the atmospheric surface layer, and show that, within experimental uncertainty, the data support the existence of a universal logarithmic region. The results support the theory of Townsend (The Structure of Turbulent Shear Flow, Vol. 2, 1976) where, in the interior part of the inertial region, both the mean velocities and streamwise turbulence intensities follow logarithmic functions of distance from the wall. © 2013 Cambridge University Press.

618 citations


Journal ArticleDOI
TL;DR: In this paper, a high-order spectral element method was used to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Reτ = 180, 360, 550 and 1\text{,}000.
Abstract: Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Reτ = 180, 360, 550 and \(1\text{,}000\). The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y + ≈ 100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.

273 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of adverse and favorable pressure gradients on boundary layers and found that the large scale features of boundary layers are more energized in the adverse pressure gradient boundary layer, especially in the outer region.
Abstract: Research into high-Reynolds-number turbulent boundary layers in recent years has brought about a renewed interest in the larger-scale structures. It is now known that these structures emerge more prominently in the outer region not only due to increased Reynolds number (Metzger & Klewicki, Phys. Fluids, vol. 13(3), 2001, pp. 692–701; Hutchins & Marusic, J. Fluid Mech., vol. 579, 2007, pp. 1–28), but also when a boundary layer is exposed to an adverse pressure gradient (Bradshaw, J. Fluid Mech., vol. 29, 1967, pp. 625–645; Lee & Sung, J. Fluid Mech., vol. 639, 2009, pp. 101–131). The latter case has not received as much attention in the literature. As such, this work investigates the modification of the large-scale features of boundary layers subjected to zero, adverse and favourable pressure gradients. It is first shown that the mean velocities, turbulence intensities and turbulence production are significantly different in the outer region across the three cases. Spectral and scale decomposition analyses confirm that the large scales are more energized throughout the entire adverse pressure gradient boundary layer, especially in the outer region. Although more energetic, there is a similar spectral distribution of energy in the wake region, implying the geometrical structure of the outer layer remains universal in all cases. Comparisons are also made of the amplitude modulation of small scales by the large-scale motions for the three pressure gradient cases. The wall-normal location of the zero-crossing of small-scale amplitude modulation is found to increase with increasing pressure gradient, yet this location continues to coincide with the large-scale energetic peak wall-normal location (as has been observed in zero pressure gradient boundary layers). The amplitude modulation effect is found to increase as pressure gradient is increased from favourable to adverse.

185 citations


Journal ArticleDOI
TL;DR: In this paper, the feasibility and accuracy of three different CFD approaches, namely 2D URANS, 2.5D LES, and 2D large eddy simulations (LES), were investigated in the aerodynamic characterization of straight-bladed VAWT (SBVAWT), with a focus on the capability of the two.5d LES approach in CFD simulation of high angle of attack (AOA) flow.

185 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of a superhydrophobic surface, consisting of microgrates aligned in the flow direction, on skin-friction drag in turbulent flows were investigated through direct numerical simulation of turbulent channel flows.
Abstract: Superhydrophobic surfaces have attracted much attention lately as they present the possibility of achieving a substantial skin-friction drag reduction in turbulent flows. In this paper, the effects of a superhydrophobic surface, consisting of microgrates aligned in the flow direction, on skin-friction drag in turbulent flows were investigated through direct numerical simulation of turbulent channel flows. The superhydrophobic surface was modeled through a shear-free boundary condition on the air-water interface. Dependence of the effective slip length and resulting skin-friction drag on Reynolds number and surface geometry was examined. In laminar flows, the effective slip length depended on surface geometry only, independent of Reynolds number, consistent with an existing analysis. In turbulent flows, the effective slip length was a function of Reynolds number, indicating its dependence on flow conditions near the surface. The resulting drag reduction was much larger in turbulent flows than in laminar flows, and near-wall turbulence structures were significantly modified, suggesting that indirect effects resulting from modified turbulence structures played a more significant role in reducing drag in turbulent flows than the direct effect of the slip, which led to a modest drag reduction in laminar flows. It was found that the drag reduction in turbulent flows was well correlated with the effective slip length normalized by viscous wall units.

177 citations


Journal ArticleDOI
TL;DR: In this article, the onset and development of turbulence from controlled disturbances in compressible ( ), flat-plate boundary layers is studied by direct numerical simulation, and it is shown that H- and K-type breakdowns both relax toward the same statistical structure typical of developed turbulence at high Reynolds number immediately after the skin-friction maximum.
Abstract: The onset and development of turbulence from controlled disturbances in compressible ( ), flat-plate boundary layers is studied by direct numerical simulation. We have validated the initial disturbance development, confirmed that H- and K-regime transitions were reproduced and, from these starting points, we carried these simulations beyond breakdown, past the skin-friction maximum and to higher Reynolds numbers than investigated before to evaluate how these two flow regimes converge towards turbulence and what transitional flow structures embody the statistics and mean dynamics of developed turbulence. We show that H- and K-type breakdowns both relax toward the same statistical structure typical of developed turbulence at high Reynolds number immediately after the skin-friction maximum. This threshold marks the onset of self-sustaining mechanisms of near-wall turbulence. At this point, computed power spectra exhibit a decade of Kolmogorov inertial subrange; this is further evidence of convergence to equilibrium turbulence at the late stage of transition. Here, visualization of the instantaneous flow structure shows numerous, tightly packed hairpin vortices (Adrian, Phys. Fluids, vol. 19, 2007, 041301). Strongly organized coherent hairpin structures are less perceptible farther downstream (at higher Reynolds numbers), but the flow statistics and near-wall dynamics are the same. These structurally simple hairpin-packet solutions found in the very late stages of H- and K-type transitions obey the statistical measurements of higher-Reynolds-number turbulence. Comparison with the bypass transition of Wu & Moin (Phys. Fluids, vol. 22, 2010, pp. 85–105) extends these observations to a wider class of transitional flows. In contrast to bypass transition, the (time- and spanwise-averaged) skin-friction maximum in both H- and K-type transitions overshoots the turbulent correlation. Downstream of these friction maxima, all three skin-friction profiles collapse when plotted versus the momentum-thickness Reynolds number, . Mean velocities, turbulence intensities and integral parameters collapse generally beyond in each transition scenario. Skin-friction maxima, organized hairpin vortices and the onset of self-sustaining turbulence found in controlled H- and K-type transitions are, in many dynamically important respects, similar to development of turbulent spots seen by Park et al. (Phys. Fluids, vol. 24, 2012, 035105). A detailed statistical comparison demonstrates that each of these different transition scenarios evolve into a unique force balance characteristic of higher-Reynolds-number turbulence (Klewicki, Ebner & Wu, J. Fluid Mech., vol. 682, 2011, pp. 617–651). We postulate that these dynamics of late-stage transition as manifested by hairpin packets can serve as a reduced-order model of high-Reynolds-number turbulent boundary layers.

171 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the -order moments, raised to the power, also follow logarithmic behaviour according to, where is the velocity fluctuation normalized by the friction velocity, is an outer length scale and are non-universal constants.
Abstract: High-Reynolds-number data in turbulent boundary layers are analysed to examine statistical moments of streamwise velocity fluctuations . Prior work has shown that the variance of exhibits logarithmic behaviour with distance to the surface, within an inertial sublayer. Here we extend these observations to even-order moments. We show that the -order moments, raised to the power also follow logarithmic behaviour according to , where is the velocity fluctuation normalized by the friction velocity, is an outer length scale and are non-universal constants. The slopes in the logarithmic region appear quite insensitive to Reynolds number, consistent with universal behaviour for wall-bounded flows. The slopes differ from predictions that assume Gaussian statistics, and instead are consistent with sub-Gaussian behaviour.

164 citations


Journal ArticleDOI
TL;DR: In this article, the effect of nozzle pressure ratios on the characteristics of highly underexpanded jets is investigated in terms of a phase diagram revealing the shock speeds and duration of the transient stages.
Abstract: Large-eddy simulations (LES) based on scale-selective implicit filtering are carried out in order to study the effect of nozzle pressure ratios on the characteristics of highly underexpanded jets. Pressure ratios ranging from 4.5 to 8.5 with Reynolds numbers of the order 75 000–140 000 are considered. The studied configuration agrees well with the classical picture of the structure of highly underexpanded jets. Similarities and differences between simulation and experiments are discussed by comparing the concentration field structures from LES and planar laser induced fluorescence data. The transient stages, leading eventually to the highly underexpanded state, are visualized and investigated in terms of a phase diagram revealing the shock speeds and duration of the transient stages. For the studied nozzle pressure ratio range, the Mach disk dimensions are found to be in good agreement with literature data and experimental observations. It is observed how the nozzle pressure ratio influences the Mach disk width, and thereby the slip line separation, which leads to co-annular jets with inner and outer shear layers at higher pressure ratios. The improved mixing with increasing pressure ratio is demonstrated by the probability density functions of the concentration. The coherent structures downstream of the Mach disk are identified using proper orthogonal decomposition (POD). The structures indicate a helical mode originating from the shear layers of the jet. Despite the relatively low energy content of the dominant POD modes, the frequencies of the POD time coefficients explain the dominant frequencies in the pressure fluctuation spectra.

149 citations



Journal ArticleDOI
TL;DR: In this paper, an in-depth characterization of the vortex formation and breakup process in a forced laminar separation bubble is presented, exploiting the largely periodic character of the flow in time as well as in the spanwise direction.
Abstract: The convective primary amplification of a forced two-dimensional perturbation initiates the formation of essentially two-dimensional large-scale vortices in a laminar separation bubble. These vortices are then shed from the bubble with the forcing frequency. Immediately downstream of their formation, the vortices get distorted in the spanwise direction and quickly disintegrate into small-scale turbulence. The laminar-turbulent transition in a forced laminar separation bubble is dominated by this vortex formation and breakup process. Using numerical and experimental data, we give an in-depth characterization of this process in physical space as well as in Fourier space, exploiting the largely periodic character of the flow in time as well as in the spanwise direction. We present evidence that a combination of more than one secondary instability mechanism is active during this process. The first instability mechanism is the elliptic instability of vortex cores, leading to a spanwise deformation of the cores with a spanwise wavelength of the order of the size of the vortex. Another mechanism, potentially an instability of flow in between two consecutive vortices, is responsible for three-dimensionality in the braid region. The corresponding disturbances possess a much smaller spanwise wavelength as compared to those amplified through elliptic instability. The secondary instability mechanisms occur for both fundamental and subharmonic frequency, respectively, even in the absence of continuous forcing, indicative of temporal amplification in the region of vortex formation. © 2013 Cambridge University Press.

123 citations


Journal ArticleDOI
TL;DR: In this article, the effect of header shape (rectangular and triangular) on flow mal-distribution and the manufacturing tolerances along the channel length and between the channels was investigated, and the results clearly illustrate that flow separation and recirculation bubbles occurring in the inlet header are primary responsible for the flow mal distribution between channels.

Journal ArticleDOI
TL;DR: In this article, a large eddy simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3D turbulent cavitating flows around a twisted hydrofoil.
Abstract: Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavitating flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term. The predicted 3-D cavitation evolutions, including the cavity growth, break-off and collapse downstream, and the shedding cycle as well as its frequency agree fairly well with experimental results. The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching, volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane. The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness. In non-cavitation conditions, the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge. With decreasing cavitation number, the present case has σ = 1.07, and the attached sheet cavitation becomes highly unsteady, with periodic growth and break-off to form the cavitation cloud. The expansion due to cavitation induces boundary layer separation and significantly increases the vorticity magnitude at the cavity interface. A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation. Examination of the flow field shows that the vortex dilatation and baroclinic torque terms increase in the cavitating case to the same magnitude as the vortex stretching term, while for the non-cavitating case these two terms are zero.

Journal ArticleDOI
TL;DR: Del Alamo et al. as mentioned in this paper applied a semi-empirical correction to the experimental data to estimate how Taylor's frozen field hypothesis distorts the pseudo-spatial spectra inferred from time-resolved measurements.
Abstract: Well-resolved streamwise velocity spectra are reported for smooth- and rough-wall turbulent pipe flow over a large range of Reynolds numbers. The turbulence structure far from the wall is seen to be unaffected by the roughness, in accordance with Townsend’s Reynolds number similarity hypothesis. Moreover, the energy spectra within the turbulent wall region follow the classical inner and outer scaling behaviour. While an overlap region between the two scalings and the associated law are observed near , the behaviour is obfuscated at higher Reynolds numbers due to the evolving energy content of the large scales (the very-large-scale motions, or VLSMs). We apply a semi-empirical correction (del Alamo & Jimenez, J. Fluid Mech., vol. 640, 2009, pp. 5–26) to the experimental data to estimate how Taylor’s frozen field hypothesis distorts the pseudo-spatial spectra inferred from time-resolved measurements. While the correction tends to suppress the long wavelength peak in the logarithmic layer spectrum, the peak nonetheless appears to be a robust feature of pipe flow at high Reynolds number. The inertial subrange develops around where the characteristic region is evident, which, for high Reynolds numbers, persists in the wake and logarithmic regions. In the logarithmic region, the streamwise wavelength of the VLSM peak scales with distance from the wall, which is in contrast to boundary layers, where the superstructures have been shown to scale with boundary layer thickness throughout the entire shear layer. Moreover, the similarity in the streamwise wavelength scaling of the large- and very-large-scale motions supports the notion that the two are physically interdependent.

Journal ArticleDOI
TL;DR: In this article, the effect of punching delta winglet vortex generators into the louvered fin surface in the near wake region of each tube was numerically investigated using computational fluid dynamics (CFD).

Journal ArticleDOI
TL;DR: In this paper, a sharp-edged rectangular cylinder with aspect ratio height/width 1:5 (width/span ratio 1:10.8), which was investigated in both basic orientations, lengthwise (4×103

Journal ArticleDOI
TL;DR: In this paper, Wu et al. characterized the spatial arrangements of very large-scale motions (VLSMs) extending through the logarithmic layer and above, and found that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by two-and three-dimensional two-point spatial correlations of velocity.
Abstract: The physical structures of velocity are examined from a recent direct numerical simulation of fully developed incompressible turbulent pipe flow (Wu, Baltzer & Adrian, J. Fluid Mech., vol. 698, 2012, pp. 235–281) at a Reynolds number of (based on bulk velocity) and a Karman number of . In that work, the periodic domain length of pipe radii was found to be sufficient to examine long motions of negative streamwise velocity fluctuation that are commonly observed in wall-bounded turbulent flows and correspond to the large fractions of energy present at very long streamwise wavelengths ( ). In this paper we study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large-scale motions (VLSMs) extending through the logarithmic layer and above, and we find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by two- and three-dimensional two-point spatial correlations of velocity. The correlations also reveal that the shorter, large-scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells centred above the logarithmic layer and that they appear to play an important role in organizing the flow, while themselves contributing only a minor fraction of the flow turbulent kinetic energy. The roll cell motions play an important role with the smaller scales of motion that are necessary to create the strong streamwise streaks of low-velocity fluctuation that characterize the flow.

Journal ArticleDOI
TL;DR: In this paper, the authors report on successful laboratory experiments that elucidate flow structure in one constant-width bend and a second bend with an outer-bank widening, with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport.
Abstract: There is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply-curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant-width bend and a second bend with an outer-bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport. In the constant-width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer-bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer-bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant-width bend. In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant-width bend, the topographic steering impeded the generation of an outer-bank cell of secondary flow. In the bend with outer-bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer-bank widening was highly three dimensional and included return currents near the bottom. In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer-bank cell of secondary flow, and flow separation and recirculation in an outer-bank widening.

Journal ArticleDOI
TL;DR: In this article, the authors derived an analytical model for the apparent slip length, the change in drag and the optimum air layer thickness of laminar channel and pipe flow over an idealised superhydrophobic surface, i.e. a gas layer of constant thickness retained on a wall.
Abstract: Analytic results are derived for the apparent slip length, the change in drag and the optimum air layer thickness of laminar channel and pipe flow over an idealised superhydrophobic surface, i.e. a gas layer of constant thickness retained on a wall. For a simple Couette flow the gas layer always has a drag reducing effect, and the apparent slip length is positive, assuming that there is a favourable viscosity contrast between liquid and gas. In pressure-driven pipe and channel flow blockage limits the drag reduction caused by the lubricating effects of the gas layer; thus an optimum gas layer thickness can be derived. The values for the change in drag and the apparent slip length are strongly affected by the assumptions made for the flow in the gas phase. The standard assumptions of a constant shear rate in the gas layer or an equal pressure gradient in the gas layer and liquid layer give considerably higher values for the drag reduction and the apparent slip length than an alternative assumption of a vanishing mass flow rate in the gas layer. Similarly, a minimum viscosity contrast of four must be exceeded to achieve drag reduction under the zero mass flow rate assumption whereas the drag can be reduced for a viscosity contrast greater than unity under the conventional assumptions. Thus, traditional formulae from lubrication theory lead to an overestimation of the optimum slip length and drag reduction when applied to superhydrophobic surfaces, where the gas is trapped.

Journal ArticleDOI
TL;DR: In this paper, a well-resolved measurement of the streamwise velocity in zero pressure gradient turbulent boundary layers is presented for friction Reynolds numbers up to 19,670, showing that the boundary layers undergo nearly a decade increase in Reynolds number solely owing to streamwise development.
Abstract: Well-resolved measurements of the streamwise velocity in zero pressure gradient turbulent boundary layers are presented for friction Reynolds numbers up to 19,670. Distinct from most studies, the present boundary layers undergo nearly a decade increase in Reynolds number solely owing to streamwise development. The profiles of the mean and variance of the streamwise velocity exhibit logarithmic behavior in accord with other recently reported findings at high Reynolds number. The inner and mid-layer peaks of the variance profile are evidenced to increase at different rates with increasing Reynolds number. A number of statistical features are shown to correlate with the position where the viscous force in the mean momentum equation loses leading order importance, or similarly, where the mean effect of turbulent inertia changes sign from positive to negative. The near-wall peak region in the 2-D spectrogram of the fluctuations is captured down to wall-normal positions near the edge of the viscous sublayer at all Reynolds numbers. The spatial extent of this near-wall peak region is approximately invariant under inner normalization, while its large wavelength portion is seen to increase in scale in accord with the position of the mid-layer peak, which resides at a streamwise wavelength that scales with the boundary layer thickness.

Book
22 Jul 2013
TL;DR: In this article, the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35, is simulated with a full-annulus grid that models the 3D viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall.
Abstract: CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.

Journal ArticleDOI
TL;DR: In this paper, a cylindrical disturbance generator mounted near the leading edge of an airfoil significantly improved its performance under dynamic stall conditions, and the flow separation type was altered from leading-to-trailing-edge stall.
Abstract: Passive cylindrical disturbance generators mounted near the leading edge of an airfoil significantly improved its performance under dynamic stall conditions. Time-resolved particle image velocimetry and simultaneous pressure measurements were conducted at the midchord of a pitching airfoil equipped with passive disturbance generators. The disturbance generators were effective in reducing the strength of the dynamic stall vortex and therefore the negative pitching moment peak and hysteresis effects. When the disturbance generators were applied, the flow separation type was altered from leading- to trailing-edge stall. In contrast to the clean case, reattachment was initiated immediately after the separation reached the leading-edge region. In addition to the circular shape, also backward- and forward-wedge-shaped disturbance generators were investigated. Although the backward wedge also showed favorable results, the forward wedge was less successful. The shape of the disturbance generators appears to have a strong influence on the effectiveness of reducing the negative impact of dynamic stall, depending on the sense of rotation of a pair of weak trailing vortices.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated air-induced drag reduction on a 12.9-m long flat plate test model at a free stream speed of. Measurements of local skin friction, phase velocity profiles (liquid and gas) and void fraction profiles were acquired at downstream distances to 11.5m, which yielded downstream-distance-based Reynolds numbers above 80 million.
Abstract: Air-induced drag reduction was investigated on a 12.9 m long flat plate test model at a free stream speed of . Measurements of the local skin friction, phase velocity profiles (liquid and gas) and void fraction profiles were acquired at downstream distances to 11.5 m, which yielded downstream-distance-based Reynolds numbers above 80 million. Air was injected within the boundary layer behind a 13 mm backward facing step (BFS) while the incoming boundary layer was perturbed with vortex generators in various configurations immediately upstream of the BFS. Measurements confirmed that air layer drag reduction (ALDR) is sensitive to upstream disturbances, but a clean boundary layer separation line (i.e. the BFS) reduces such sensitivity. Empirical scaling of the experimental data was investigated for: (a) the critical air flux required to establish ALDR; (b) void fraction profiles; and (c) the interfacial velocity profiles. A scaling of the critical air flux for ALDR was developed from balancing shear-induced lift forces and buoyancy forces on a single bubble within a shear flow. The resulting scaling successfully collapses ALDR results from the current and past studies over a range of flow conditions and test model configurations. The interfacial velocity and void fraction profiles were acquired and scaled within the bubble drag reduction (BDR), ALDR and transitional ALDR regimes. The BDR interfacial velocity profile revealed that there was slip between phases. The ALDR results showed that the air layer thickness was nominally three-quarters of the total volumetric flux (per unit span) of air injected divided by the free stream speed. Furthermore, the air layer had an average void fraction of 0.75 and a velocity of approximately 0.2 times the free stream speed. Beyond the air layer was a bubbly mixture that scaled in a similar fashion to the BDR results. Transitional ALDR results indicate that this regime was comprised of intermittent generation and subsequent fragmentation of an air layer, with the resulting drag reduction determined by the fraction of time that an air layer was present.

Journal ArticleDOI
TL;DR: In this paper, a low-dimensional model capturing the fully coupled dynamics of a wavy liquid film in interaction with a strongly confined laminar gas flow is introduced, based on the weighted residual integral boundary layer approach of Ruyer-Quil & Manneville.
Abstract: A low-dimensional model capturing the fully coupled dynamics of a wavy liquid film in interaction with a strongly confined laminar gas flow is introduced. It is based on the weighted residual integral boundary layer approach of Ruyer-Quil & Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369) and accounts for viscous diffusion up to second order in the film parameter. The model is applied to study two scenarios: a horizontal pressure-driven water film/air flow and a gravity-driven liquid film interacting with a co- or counter-current air flow. In the horizontal case, interfacial viscous drag is weak and interfacial waves are primarily driven by pressure variations induced by the velocity difference between the two layers. This produces an extremely thin interfacial shear layer which is pinched at the main and capillary wave humps, creating several elongated vortices in the wave-fixed reference frame. In the capillary wave region preceding a large wave hump, flow separation occurs in the liquid in the form of a vortex transcending the liquid–gas interface. For the gravity-driven film, a twin vortex (in the wave-fixed reference frame) linked to the occurrence of rolling waves has been identified. It consists of the known liquid-side vortex within the wave hump and a previously unknown counter-rotating gas-side vortex, which are connected by the same interfacial stagnation points. At large counter-current gas velocities, interfacial waves on the falling liquid film are amplified and cause flooding of the channel in a noise-driven scenario, while this can be delayed by forcing regular waves at the most amplified linear wave frequency. Our model is shown to exactly capture the long-wave linear stability threshold for the general case of two-phase channel flow. Further, for the two considered scenarios, it predicts growth rates and celerity of linear waves in convincing agreement with Orr–Sommerfeld calculations. Finally, model calculations of nonlinear interfacial waves are in good agreement with film thickness and velocity measurements as well as streamline patterns in both phases obtained from direct numerical simulations.

Journal ArticleDOI
TL;DR: In this article, the structure and behaviour of the separation region in front of the step are investigated using conditional averages based on the area of reverse flow present, and the relation between the position of the upstream separation and the two-dimensional shape of the separating region is presented.
Abstract: The turbulent flow over a forward-facing step is studied using two-dimensional time-resolved particle image velocimetry. The structure and behaviour of the separation region in front of the step is investigated using conditional averages based on the area of reverse flow present. The relation between the position of the upstream separation and the two-dimensional shape of the separation region is presented. It is shown that when of ‘closed’ form, the separation region can become unstable resulting in the ejection of fluid over the corner of the step. The separation region is shown to grow simultaneously in both the wall-normal and streamwise directions, to a point where the maximum extent of the upstream position of separation is limited by the accompanying transfer of mass over the step corner. The conditional averages are traced backwards in time to identify the average behaviour of the boundary-layer displacement thickness leading up to such events. It is shown that these ejections are preceded by the convection of low-velocity regions from upstream, resulting in a three-dimensional interaction within the separation region. The size of the low-velocity regions, and the time scale at which the separation region fluctuates, is shown to be consistent with the large boundary layer structures observed in the literature. Instances of a highly suppressed separation region are accompanied by a steady increase in velocity in the upstream boundary layer.

Journal ArticleDOI
TL;DR: In this article, a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures is modeled as a buffeted laminar flow, and the transition is characterized by three distinct phases (pre-transition, transition and fully turbulent).
Abstract: Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of . The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition.

Journal ArticleDOI
TL;DR: In this article, the spatio-temporal flow structure associated with zero-net-mass-flux (ZNMF) jet forcing at the leading edge of a NACA-0015 airfoil was investigated using high-repetition rate particle image velocimetry.
Abstract: The spatio-temporal flow structure associated with zero-net-mass-flux (ZNMF) jet forcing at the leading edge of a NACA-0015 airfoil (Re = 3 × 104) is investigated using high-repetition rate particle image velocimetry. Measurements are performed at an angle of attack of 18°, where in the absence of forcing, flow separation occurs at the leading edge. Forcing is applied at a frequency of f + = 1.3 and a momentum coefficient c μ = 0.0014 for which previous force measurements indicated a 45 % increase in lift over the unforced case. The structure and dynamics associated with both the forced and unforced case are considered. The dominant frequencies associated with separation in the unforced case are identified with the first harmonic of the bluff body shedding f wake closely corresponding to the forcing frequency of f + = 1.3. A triple-decomposition of the velocity field is performed to identify the spatio-temporal perturbations produced by the ZNMF jet forcing. This forcing results in a reattachment of the flow, which is caused by the generation of large-scale vortices that entrain high-momentum fluid from the freestream. Forcing at 2f wake produces a series of vortices that advect parallel to the airfoil surface at a speed lower than the freestream velocity. Potential mechanisms by which these vortices affect flow reattachment are discussed.

Journal ArticleDOI
TL;DR: In this article, a small-scale wind tunnel was used to investigate whether vortex generators can be an effective form of passive flow control for supersonic inlet applications using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield.
Abstract: To investigate whether vortex generators can be an effective form of passive flow control an experimental investigation has been conducted in a small-scale wind tunnel. With specific emphasis on supersonic inlet applications flow separation was initiated using a combined terminal shock wave and subsonic diffuser: a configuration that has been developed as a part of a program to produce a more inlet-relevant flowfield in a small-scale wind tunnel than previous studies. When flow control was initially introduced little overall flow improvement was obtained as the losses tended to be redistributed instead of removed. It became apparent that there existed a strong coupling between the center-span flow and the corner flows. As a consequence, only when flow control was applied to both the corner flows and center-span flow was a significant flow improvement obtained. When corner suction and center-span vortex generators were employed in tandem separation was much reduced and wall-pressure and stagnation pressure...

Journal ArticleDOI
TL;DR: In this paper, a closed-loop plasma-actuated control scheme that relies on the ability to detect incipient flow separation is presented based on the heightened receptivity of the boundary layer to disturbances at the onset of flow separation.
Abstract: A closed-loop plasma-actuated control scheme that relies on the ability to detect incipient flow separation is presented It is based on the heightened receptivity of the boundary layer to disturbances at the onset of flow separation A plasma actuator introduces periodic disturbances into the flow at a low-powered “sense state” A pressure sensor measures the resulting pressure fluctuations close to the leading edge When the sensed pressure fluctuations exceed a predetermined threshold level, the plasma actuator is switched to a high-powered “control state” that is designed to reattach the flow The method provides not only a precursor for flow separation but also an indicator of when conditions exist where active flow reattachment is no longer needed This is demonstrated on a periodically oscillating airfoil that is pitched into “light” and “deep” dynamic stall The performance of the closed-loop scheme is evaluated by comparing the aerodynamic loading parameters to the baseline and open-loop unsteady

Journal ArticleDOI
Hongjie Zhong1, Cunbiao Lee1, Zhuang Su1, Shiyi Chen1, Mingde Zhou1, Jiezhi Wu1 
TL;DR: In this paper, an experimental investigation of the dynamics of a freely falling thin circular disk in still water was performed using dye visualization and particle image velocimetry, where the flow patterns of the disk zigzag motion were studied using dye and particle images.
Abstract: This paper describes an experimental investigation of the dynamics of a freely falling thin circular disk in still water. The flow patterns of the disk zigzag motion are studied using dye visualization and particle image velocimetry. Time-resolved disk motions with six degrees of freedom are obtained with a stereoscopic vision method. The flow separation and vortex shedding are found to change with the Reynolds number, . At high Reynolds numbers a new dipole vortex is shed that is significantly different from Karman-type vortices. The vortical structures are mainly composed of leading-edge vortices, a counter-rotating vortex pair and secondary trailing-edge vortices. The amplitude of the horizontal oscillation is also dependent on the Reynolds number with a critical Reynolds number , where the oscillatory amplitude is proportional to for , but becomes invariant for . Three-dimensional dipolar vortices were also observed experimentally.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the fluid-structure interaction (FSI) response and stability of flexible polyacetate NACA66 hydrofoils in viscous flow.