scispace - formally typeset
Search or ask a question
Topic

Flow separation

About: Flow separation is a research topic. Over the lifetime, 16708 publications have been published within this topic receiving 386926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the velocity field of a circular water jet impinging onto a flat plate has been measured using particle image velocimetry, or PIV, producing thousands of simultaneous two-dimensional velocity measurements for each realization.
Abstract: The velocity field of a circular water jet impinging onto a flat plate has been measured using particle image velocimetry, or PIV. The velocity field has been recorded at several instants in time, producing thousands of simultaneous two-dimensional velocity measurements for each realization. The instantaneous velocity, vorticity and rate-of-strain fields reveal the interaction of vortices near the impinging wall within the radial wall jet downstream from the stagnation point. An ensemble average of the instantaneous fields produces a mean velocity field of the jet flow, which reveals many of the processes leading to boundary layer separation and vortex breakaway within the wall jet. The PIV system extracts the velocity measurements using a two-dimensional autocorrelation method, and can obtain thousands of highly accurate velocity measurements within a few minutes. The structure found in these experiments may be similar to the ground level structure of atmospheric microburst phenomena.

115 citations

Journal ArticleDOI
TL;DR: The boundary layer created by the motion of a single rectilinear vortex filament above an infinite plane wall is considered in this paper, where it is conjectured that an eventual eruption of the boundary layer flow is to be expected along with a major modification of the inviscid flow.
Abstract: The boundary layer created by the motion of a single rectilinear vortex filament above an infinite plane wall is considered. In a frame of reference which moves uniformly with the vortex the inviscid motion is steady; however, the possibility of a corresponding steady boundary-layer solution can be ruled out and it is concluded that the boundary-layer flow is inherently unsteady for all time. To investigate the nature of the unsteady boundary-layer flow, a time-dependent problem, corresponding to the sudden insertion of the plane wall at time $t$ = 0, is considered; separation in the boundary layer is found to take place in a short period of time and the solution shows possibly explosive features as $t$ increases. It is conjectured that an eventual eruption of the boundary-layer flow is to be expected along with a major modification of the inviscid flow. The theory compares favourably with experiments on the flow induced near the ground by trailing aircraft vortices.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors dealt with turbulent boundary layers under adverse pressure gradients and well-resolved large-eddy simulations were performed to assess the influence of the streamwise pressure develo...
Abstract: This study deals with turbulent boundary layers under adverse-pressure gradients. Well-resolved large-eddy simulations (LES) were performed to assess the influence of the streamwise pressure develo ...

115 citations

Journal ArticleDOI
TL;DR: The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia, exploring the system behavior as a function of the particle volume fraction and the Reynolds number.
Abstract: The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

115 citations

Journal ArticleDOI
TL;DR: In this article, a detailed description of shear layer transition on an airfoil at low Reynolds numbers was provided using a combination of flow visualization, velocity field mapping, surface pressure fluctuation measurements, and stability analysis.
Abstract: Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100 000 was investigated using a combination of flow visualization, velocity field mapping, surface pressure fluctuation measurements, and stability analysis. The results provide a detailed description of shear layer transition on an airfoil at low Reynolds numbers. An extensive comparison of measured surface pressure and velocity fluctuations demonstrated that time-resolved surface pressure sensor arrays can be used to identify the presence of flow separation, estimate the extent of the separated flow region, and measure disturbance growth rate spectra in significantly less time than is required by conventional techniques. Surface pressure sensor measurements of disturbance growth rate, wave number, and convection speed are found to compare well with predictions of linear stability theory, supporting the claim that convection speeds measured in separation bubbles over low Reynolds number airfoils are associated with wave packe...

115 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Laminar flow
56K papers, 1.2M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
91% related
Turbulence
112.1K papers, 2.7M citations
88% related
Vortex
72.3K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022333
2021361
2020394
2019403
2018371