scispace - formally typeset
Search or ask a question
Topic

Flow separation

About: Flow separation is a research topic. Over the lifetime, 16708 publications have been published within this topic receiving 386926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the critical values of the Reynolds number and the resistance forces for laminar and turbulent regimes of fluid oscillations in pipes are calculated for both types of oscillations.
Abstract: Little is known of the transition of the laminar motion of an oscillating fluid into turbulent motion and the resistance to motion in this region. The theoretical calculation of the critical value of the Reynolds number is very complex in this case and has not yet been successfully accomplished [1, 2]. Some experimental data on this subject are presented in [3]. Below are presented results of measurements of the critical values of the Reynolds number and the resistance forces for laminar and turbulent regimes of fluid oscillations in pipes.

111 citations

Journal ArticleDOI
TL;DR: In this article, passive scalars in turbulent plane channels at computationally high Reynolds number were studied and the mean scalar profiles were found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region.
Abstract: We study passive scalars in turbulent plane channels at computationally high Reynolds number, thus allowing us to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies with size proportional to the channel height which are caused by a local production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the momentum and scalar eddies is observed, with the main difference being that the latter tend to form sharper gradients, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the passive scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection events.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a unique investigation of boundary layer flow at very high Reynolds numbers, including mean velocities, streamwise turbulence variances, and moments up to 10th order.
Abstract: Measurements are presented in zero-pressure-gradient, flat-plate, turbulent boundary layers for Reynolds numbers ranging from to ( ). The wind tunnel facility uses pressurized air as the working fluid, and in combination with MEMS-based sensors to resolve the small scales of motion allows for a unique investigation of boundary layer flow at very high Reynolds numbers. The data include mean velocities, streamwise turbulence variances, and moments up to 10th order. The results are compared to previously reported high Reynolds number pipe flow data. For , both flows display a logarithmic region in the profiles of the mean velocity and all even moments, suggesting the emergence of a universal behaviour in the statistics at these high Reynolds numbers.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of periodic excitation on a plane turbulent one-stream shear layer with turbulent separation was investigated, and it was found that sinusoidal perturbations with frequencies of order f0 [lsim ] u0/100θ0 (depending on excitation strength), introduced at the trailing edge are always amplified.
Abstract: The influence of periodic excitation on a plane turbulent one-stream shear layer with turbulent separation was investigated. For the qualitative study flow visualization was employed. Quantitative data were obtained with hot-wire anemometry and spectrum analysis. It was found that sinusoidal perturbations with frequencies of order f0 [lsim ] u0/100θ0 (depending on excitation strength), introduced at the trailing edge are always amplified. Maximum amplification factors are observed for the lowest perturbation levels. The frequency and amplitude of excitation determine the downstream location of the amplification maximum in the flow. At sufficient amplitude two-dimensional vortices are formed which subsequently decay without pairing. The development of the periodic r.m.s. values along x follows a universal curve for all frequencies and amplitudes when properly normalized.At high excitation amplitudes the flow development depends strongly on the geometrical conditions of the excitation arrangement at the trailing edge. Thus regular vortex pairing as well as suppression of pairing can be achieved.The excited shear layer has considerably stronger, yet nonlinear, spread than the neutral. The region of vortex formation, irrespective of whether it includes pairing or not, is associated with a step-like increase in width, while after the position of maximum vortex energy, i.e. in the region of decay, the spread is reduced to values below the neutral. There the overall lateral fluctuation energy is increased, while the longitudinal may be decreased as compared with the neutral flow.

111 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Laminar flow
56K papers, 1.2M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
91% related
Turbulence
112.1K papers, 2.7M citations
88% related
Vortex
72.3K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022333
2021361
2020394
2019403
2018371