scispace - formally typeset
Search or ask a question
Topic

Flow separation

About: Flow separation is a research topic. Over the lifetime, 16708 publications have been published within this topic receiving 386926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results for an equilibrium boundary layer in a strong adverse pressure gradient flow are reported in this article, showing that similarity in the mean flow and the turbulent stresses has been achieved over a substantial streamwise distance where the skin friction coefficient is kept at a low, constant level.
Abstract: The experimental results for an equilibrium boundary layer in a strong adverse pressure gradient flow are reported. The measurements show that similarity in the mean flow and the turbulent stresses has been achieved over a substantial streamwise distance where the skin friction coefficient is kept at a low, constant level. Although the Reynolds stress distribution across the layer is entirely different from the flow at zero pressure gradient, the ratios between the different turbulent stress components were found to be similar, showing that the mechanism for distributing the turbulent energy between the different components remains unaffected by the mean flow pressure gradient. Close to the surface the gradient of the mixing length was found to increase from Kl ≈ 0.41 to Kl ≈ 0.78, almost twice as high as for the zero pressure gradient case. Similarity in the triple correlations was also found to be good. The correlations show that there is a considerable diffusion of turbulent energy from the central part of the boundary layer towards the wall. The diffusion mechanism is caused by a second peak in the turbulence production, located at y/δ ≈ 0.45. This production was for the present case almost as strong as the production found near the wall. The energy budget for the turbulent kinetic energy also shows that strong dissipation is not restricted to the wall region, but is significant for most of the layer.

264 citations

Journal ArticleDOI
TL;DR: In this article, the accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models in predicting complex flows with separation is examined, and the unsteady flow around a square cylinder and over a wall-mounted cube are simulated and compared with experimental data.

263 citations

Journal ArticleDOI
TL;DR: In this article, the phase-averaged velocities and turbulence intensities of the turbulent shear layer and the associated recirculation region on the sidewall formed in flow separation from the forward corner of a square cylinder have been studied with one-component laser-Doppler velocimetry.
Abstract: The turbulent shear layer and the associated recirculation region on the sidewall formed in flow separation from the forward corner of a square cylinder have been studied with one-component laser-Doppler velocimetry. Because of vortex shedding, the flow is approximately periodic, and is treated as a separated flow undergoing largeamplitude forcing at the shedding frequency. Phase (ensemble)-averaged velocities and turbulence intensities were obtained, and a close relationship in phase and amplitude between phase-averaged turbulence intensities and gradients of phase-averaged velocity is found in much of the flow region. The similarity behaviour of the phase-averaged profiles in the shear layer as well as the streamwise growth of the shear layer are investigated. While phase-averaged velocity profiles collapse well in similarity coordinates, normalized turbulence intensities exhibit systematic deviations from similarity. Shear-layer growth also departs markedly from the linear growth law of unforced plane mixing layers. The effect of the recirculation is suggested as a possible explanation for some of these deviations. Similarities to and differences from steady and forced mixing layers, steady separated flows with recirculation, and unsteady boundary layers are discussed.

259 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0 was investigated.
Abstract: This paper is concerned with the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0. A literature survey was carried out and it was found that the flow shows a strong two-dimensional behavior, on the plane of symmetry, for Reynolds numbers ReD=ρUbD/μ below approximately 400 (Ub= bulk velocity and D= hydraulic diameter). In this Reynolds number range, two-dimensional predictions were carried out to provide information on the general integral properties of backward-facing step flows, on mean velocity distributions and streamlines. Information on characteristic flow patterns is provided for a wide Reynolds number range, 10−4≤ReD≤800. In the limiting case of ReD→0, a sequence of Moffatt eddies of decreasing size and intensity is verified to exist in the concave corner also at ReD=1. The irreversible pressure losses are determined for various Reynolds numbers as a function of the expansion ratio. The two-dimensional simulations are known to underpredict the primary reattachment length for Reynolds numbers beyond which the actual flow is observed to be three-dimensional. The spatial evolution of jet-like flows in both the streamwise and the spanwise direction and transition to three-dimensionality were studied at a Reynolds number ReD=648. This three-dimensional analysis with the same geometry and flow conditions as reported by Armaly et al. (1983) reveals the formation of wall jets at the side wall within the separating shear layer. The wall jets formed by the spanwise component of the velocity move towards the symmetry plane of the channel. A self-similar wall-jet profile emerges at different spanwise locations starting with the vicinity of the side wall. These results complement information on backward-facing step flows that is available in the literature.

259 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the bed proximity, the thickness of the boundary layer, and the velocity gradient on the pressure distribution, the hydrodynamic forces and the vortex shedding behavior were examined.

258 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Laminar flow
56K papers, 1.2M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
91% related
Turbulence
112.1K papers, 2.7M citations
88% related
Vortex
72.3K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022333
2021361
2020394
2019403
2018371