scispace - formally typeset
Search or ask a question
Topic

Flow separation

About: Flow separation is a research topic. Over the lifetime, 16708 publications have been published within this topic receiving 386926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of spanwise waviness of separation lines on the flow around common bluff forms is investigated in wind-tunnel measurements on thin plates normal to the flow and on rectangular cross-section bodies at Reynolds numbers of about 40 000.

192 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the delay in transition from laminar to turbulent flow caused by shear-thinning, suppression of turbulent fluctuations particularly in the radial and tangential components of normal stress, and the drag reduction at the higher Reynolds numbers.
Abstract: Measurements of mean axial velocity and of the three normal stresses have been obtained in fully developed pipe-flow with four concentrations of a polymer (sodium carboxymethyl cellulose) in aqueous solution and with water and viscous Newtonian fluids encompassing a range of Reynolds numbers from 240 to 111,000. The results quantify the delay in transition from laminar to turbulent flow caused by shear-thinning, the suppression of turbulent fluctuations particularly in the radial and tangential components of normal stress, and the drag reduction at the higher Reynolds numbers. They also confirm that the maximum drag reduction asymptote is appropriate to these shear-thinning solutions.

191 citations

Journal ArticleDOI
TL;DR: In this paper, the flow-directing capability of flat-walled diffuser elements for valve-less micropumps is investigated and the results are compared with previously published results on pump performance.
Abstract: An investigation of flat-walled diffuser elements for valve-less micropumps is presented. The diffuser element is a small angle flow channel with a rounded inlet and a preferably sharp outlet. The diverging-wall direction is the positive flow direction. The flow-directing capability under steady flow conditions was determined experimentally for several different diffuser elements. The flow-pressure characteristic was studied in detail for one of them. The result is compared with previously published results on pump performance. Numerical simulations were done using the Computational Fluid Dynamics program ANSYS/Flotran. The simulations show the flow-directing capability of the diffuser elements and predict the flow-pressure characteristics well for Reynolds numbers below 300-400. For higher Reynolds numbers, the simulations show the flow-directing capability, but there is a larger discrepancy between simulations and measurements. Simulations were also done for a nozzle element, a wide-angle flow channel with sharp inlet and outlets used in the micropump with dynamic passive-valves. A nozzle element has the converging-wall direction as positive flow direction. The simulations show differences in the flow patterns for diffuser elements and nozzle elements that explain the opposite positive flow directions. The diffuser element has an ordered flow and takes advantage of the pressure recovery in the diverging-wall direction. The nozzle element has gross flow separation in the diverging-wall direction and there is a vena-contracta effect instead of pressure recovery. The effective cross-sectional area is smaller in the diverging-wall direction than in the converging-wall direction.

191 citations

Journal ArticleDOI
TL;DR: In this article, the average shape of a spot and the mean flow field in its vicinity were measured using hot-wire anemometers, showing that the spot has an arrowhead shape whose leading interface is convected downstream somewhat more slowly than the free stream velocity near the plane of symmetry and at approximately half the free-stream velocity at the extreme spanwise location.
Abstract: Artificially initiated turbulent spots in a Blasius boundary layer were investi- gated experimentally using hot-wire anemometers. Electrical discharges generated the spots, which grew in all directions rn they were swept downstream by the mean flow. A typical lateral spread angle of the spots is 10° to each side of t.he plane of symmetry. Conditional sampling methods were used to form ensemble-averaged data yielding the average shape of a spot and the mean flow field in its vicinity. Far downstream a spot exhibits conical similarity and all quantities measured seem to be independent of the type of disturbance which generated the spot in the first place.In plan view, the spot has an arrowhead shape whose leading interface is convected downstream somewhat more slowly than the free-stream velocity near the plane of symmetry and at approximately half the free-stream velocity at the extreme spanwise location. The trailing interface is convected at a constant velocity throughout (UTE = 0·5 U∞). In this way the spot entrains laminar fluid through both interfaces, resulting in its elongation it proceeds downstream. The flow near the surface accelerates abruptly as the leading interface passes by, however the acceleration continues within the spot and the velocity attains a maximum near the trailing interface. There is therefore a continuous increase in skin friction towards the trailing interface. Further away from the surface the passage of the spot is marked by deceleration followed by acceleration after the ridge of the spot passes the measuring station. All changes in velocity occur monotonically without causing inflexions or kinks in the ensemble-averaged velocity profiles. Although the displacement and momentum thicknesses change quite rapidly within the spot, the shape factor is practically constant in the interior region (H = 1·5); and the velocity profiles may be very well represented by the universal logarithmic distribution. The spanwise velocity component W is everywhere directed outwards (i.e. away from the plane of symmetry) and increases with increasing z. The component of velocity normal to the surface is directed towards the plate near the leading interface and away from it in the remaining part of the spot.Two-point velocity correlation measurements suggest that the spot may be represented by an arrowhead vortex tube which is convected downstream with a velocity equal to 65 yo of the free-stream velocity. Pluid which is entrained near the plane of symmetry acquires a helical motion towards the extremities of the spot. This motion helps to explain the lateral as well as the longitudinal spread of the spot.

191 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the stability of the reattaching shear layer in a backward-facing step with laminar separation under controlled perturbation for a Reynolds number of 11000, based on a step height h and a free-stream velocity UO.
Abstract: The flow over a backward-facing step with laminar separation was investigated experimentally under controlled perturbation for a Reynolds number of 11000, based on a step height h and a free-stream velocity UO. The reattaching shear layer was found to have two distinct modes of instability: the ‘shear layer mode’ of instability at Stθ ≈ 0.012 (Stθ ≡ fθ/UO, θ being the momentum thickness at separation and f the natural roll-up frequency of the shear layer); and the ‘step mode’ of instability at Sth ≈ 0.185 (Sth ≡ fh/U0). The shear layer instability frequency reduced to the step mode one via one or more stages of a vortex merging process. The perturbation increased the shear layer growth rate and the turbulence intensity and decreased the reattachment length compared to the unperturbed flow. Cross-stream measurements of the amplitudes of the perturbed frequency and its harmonics suggested the splitting of the shear layer. Flow visualization confirmed the shear layer splitting and showed the existence of a low-frequency flapping of the shear layer.

191 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Laminar flow
56K papers, 1.2M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
91% related
Turbulence
112.1K papers, 2.7M citations
88% related
Vortex
72.3K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022333
2021361
2020394
2019403
2018371