scispace - formally typeset

Topic

Fluid mechanics

About: Fluid mechanics is a(n) research topic. Over the lifetime, 12493 publication(s) have been published within this topic receiving 381769 citation(s). The topic is also known as: aerohydromechanics.


Papers
More filters
Book
01 Jan 1996
TL;DR: This text develops and applies the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice, including advanced techniques in computational fluid dynamics.
Abstract: Preface. Basic Concepts of Fluid Flow.- Introduction to Numerical Methods.- Finite Difference Methods.- Finite Volume Methods.- Solution of Linear Equation Systems.- Methods for Unsteady Problems.- Solution of the Navier-Stokes Equations.- Complex Geometries.- Turbulent Flows.- Compressible Flow.- Efficiency and Accuracy Improvement. Special Topics.- Appendeces.

7,054 citations

MonographDOI
01 Jan 2000

5,643 citations

Journal ArticleDOI
Abstract: A new technique is described for the numerical investigation of the time‐dependent flow of an incompressible fluid, the boundary of which is partially confined and partially free The full Navier‐Stokes equations are written in finite‐difference form, and the solution is accomplished by finite‐time‐step advancement The primary dependent variables are the pressure and the velocity components Also used is a set of marker particles which move with the fluid The technique is called the marker and cell method Some examples of the application of this method are presented All non‐linear effects are completely included, and the transient aspects can be computed for as much elapsed time as desired

5,564 citations

Book
31 Oct 2002
TL;DR: A student or researcher working in mathematics, computer graphics, science, or engineering interested in any dynamic moving front, which might change its topology or develop singularities, will find this book interesting and useful.
Abstract: This book is an introduction to level set methods and dynamic implicit surfaces. These are powerful techniques for analyzing and computing moving fronts in a variety of different settings. While it gives many examples of the utility of the methods to a diverse set of applications, it also gives complete numerical analysis and recipes, which will enable users to quickly apply the techniques to real problems. The book begins with a description of implicit surfaces and their basic properties, then devises the level set geometry and calculus toolbox, including the construction of signed distance functions. Part II adds dynamics to this static calculus. Topics include the level set equation itself, Hamilton-Jacobi equations, motion of a surface normal to itself, re-initialization to a signed distance function, extrapolation in the normal direction, the particle level set method and the motion of co-dimension two (and higher) objects. Part III is concerned with topics taken from the fields of Image Processing and Computer Vision. These include the restoration of images degraded by noise and blur, image segmentation with active contours (snakes), and reconstruction of surfaces from unorganized data points. Part IV is dedicated to Computational Physics. It begins with one phase compressible fluid dynamics, then two-phase compressible flow involving possibly different equations of state, detonation and deflagration waves, and solid/fluid structure interaction. Next it discusses incompressible fluid dynamics, including a computer graphics simulation of smoke, free surface flows, including a computer graphics simulation of water, and fully two-phase incompressible flow. Additional related topics include incompressible flames with applications to computer graphics and coupling a compressible and incompressible fluid. Finally, heat flow and Stefan problems are discussed. A student or researcher working in mathematics, computer graphics, science, or engineering interested in any dynamic moving front, which might change its topology or develop singularities, will find this book interesting and useful.

5,249 citations


Network Information
Related Topics (5)
Reynolds number

68.4K papers, 1.6M citations

91% related
Turbulence

112.1K papers, 2.7M citations

90% related
Heat transfer

181.7K papers, 2.9M citations

85% related
Boundary value problem

145.3K papers, 2.7M citations

85% related
Differential equation

88K papers, 2M citations

84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021275
2020343
2019345
2018355
2017425